
C7.5: General Relativity I

Problem Sheet 3

Please submit solutions in the collection boxes in the basement of the Mathematical Institute no

later than Tuesday 20th November, 4pm. Corrections to ashmore@maths.ox.ac.uk.

1. Independent components of the Riemann tensor

The Riemann tensor Rab
c
d associated to a torsion-free (Γa

[bc] = 0) covariant derivative ∇a obeys

the following algebraic identities:

1. Rab
c
d = −Rba

c
d

2. R[ab
c
d] = 0

What is the additional algebraic identity obeyed when ∇a is the Levi-Civita covariant derivative

compatible with a gab? In this case, show that the Riemann tensor in four dimensions has 20

independent components. How many independent components does it have it D dimensions?

2. Riemann tensor in two dimensions

1. Show that in two dimensions, the Riemann tensor must be of the form

Rabcd =
1

2
R(gacgbd − gadgbc),

where R is the Ricci scalar. Hint: express the Ricci scalar R in terms of the one independent

component of the Riemann tensor, say R1212.

2. Show that Einstein tensor Gab = Rab − 1
2gabR vanishes automatically in two dimensions.

3. Consider the two-dimensional de Sitter metric

ds2 = −du2 + cosh2 udϕ2,

where −∞ < u <∞ and 0 ≤ ϕ < 2π. Using your results from question 5 of problem sheet

2, compute the one independent component of the Riemann tensor, say Ruϕuϕ.

4. Compute the Ricci scalar R for this two-dimensional de Sitter metric and verify that

Rabcd = gacgbd − gadgbc.
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3. Newtonian limit of geodesic deviation

The relative acceleration of a one-parameter family of geodesics xat (λ) = xa(λ, t) is determined

by the geodesic deviation equation

D2Nd

Dτ2
= Rab

d
cV

aN bV c,

where

V a =
dxa

dλ
, N b =

dxb

dt
,

and D/Dτ = V a∇a is the covariant derivative in the direction of V a.

In the Newtonian limit, show that this reduces to

∂2N i

∂t2
= −

∑
j

∂2φ

∂xi∂xj
N j ,

where φ is the gravitational potential.

4. Schwarzschild solution

Check that the Schwarzschild solution satisfies the vacuum field equations Rab = 0. You should

do this carefully in your own time; it is not necessary to hand this calculation in.

5. Circular orbits

The Lagrangian for affinely parametrised geodesics in the Schwarzschild solution is

L = −(1− 2M/r)ṫ2 + (1− 2M/r)−1ṙ2 + r2(θ̇2 + sin2 θ φ̇2).

Show that

E = (1− 2M/r)ṫ, J = r2 sin2 θ φ̇,

are conserved. What symmetries do they correspond to? Explain why the Lagrangian itself is

conserved and why L = −1 for time-like geodesics parametrised by proper time. Show that,

without loss of generality, you can always restrict to time-like geodesics lying in the equatorial

plane, θ = π/2.

Now consider a circular orbit in the equatorial plane at coordinate distance R. Show that

this is a time-like geodesic if R > 3M and find the conserved quantities (E, J).

6. Orbital periods

The Schwarzschild metric describing spacetime outside a spherical mass M is given by

ds2 = −(1− 2M/r)dt2 + (1− 2M/r)−1dr2 + r2(dθ2 + sin2 θ dφ2).

1. Using conserved quantities and the change of variables r = 1/u, find the radius R at

which a photon can follow a circular orbit. Hint: use L = 0 for a null geodesic to find an
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expression for ṙ2, then rewrite in terms of du/dφ.

2. What would a fixed observer at r = R measure as the time period of the photon’s orbit?

3. If this fixed observer flashes a signal each time the photon passes, at what interval would a

stationary observer at r →∞ measure these flashes?
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