C7.5: General Relativity I
Problem Sheet 3

Please submit solutions in the collection boxes in the basement of the Mathematical Institute no
later than Tuesday 20th November, 4pm. Corrections to ashmore@maths.ox.ac.uk.

1. Independent components of the Riemann tensor

The Riemann tensor R,y associated to a torsion-free (I'* b = 0) covariant derivative V, obeys
the following algebraic identities:

1. Ryp®a = —Riaa
2. Rigyq =0

What is the additional algebraic identity obeyed when V, is the Levi-Civita covariant derivative
compatible with a g.;7 In this case, show that the Riemann tensor in four dimensions has 20

independent components. How many independent components does it have it D dimensions?

2. Riemann tensor in two dimensions

1. Show that in two dimensions, the Riemann tensor must be of the form

1
Roped = §R(9acgbd — Gadlbe)s

where R is the Ricci scalar. Hint: express the Ricci scalar R in terms of the one independent
component of the Riemann tensor, say Ris12.

2. Show that Einstein tensor Gg, = Rgp — % Jap R vanishes automatically in two dimensions.

3. Consider the two-dimensional de Sitter metric
ds? = —du? 4 cosh? udy?,

where —oo < u < 0o and 0 < ¢ < 27. Using your results from question 5 of problem sheet
2, compute the one independent component of the Riemann tensor, say Rypue-

4. Compute the Ricci scalar R for this two-dimensional de Sitter metric and verify that

Rabed = GacGbd — JadJbe-



3. Newtonian limit of geodesic deviation

The relative acceleration of a one-parameter family of geodesics z§(\) = z%(\, t) is determined

by the geodesic deviation equation

DQNd d a ntby /e
D2 = Ry VNV,
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and D/Dt = V%V, is the covariant derivative in the direction of V.
In the Newtonian limit, show that this reduces to
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where ¢ is the gravitational potential.

4. Schwarzschild solution
Check that the Schwarzschild solution satisfies the vacuum field equations Ry, = 0. You should
do this carefully in your own time; it is not necessary to hand this calculation in.
5. Circular orbits
The Lagrangian for affinely parametrised geodesics in the Schwarzschild solution is
L=—(1—2M/r){+ (1 -2M/r)" 172 +r2(% 4 sin? 0 ¢°).
Show that
E = (1-2M/r)t, J=1r%sin?0 ¢,

are conserved. What symmetries do they correspond to? Explain why the Lagrangian itself is
conserved and why £ = —1 for time-like geodesics parametrised by proper time. Show that,
without loss of generality, you can always restrict to time-like geodesics lying in the equatorial
plane, § = /2.

Now consider a circular orbit in the equatorial plane at coordinate distance R. Show that
this is a time-like geodesic if R > 3M and find the conserved quantities (E, J).

6. Orbital periods
The Schwarzschild metric describing spacetime outside a spherical mass M is given by
ds? = —(1 — 2M/r)dt*> 4+ (1 — 2M /r)~dr? 4 r2(d6? + sin” 6 dp?).

1. Using conserved quantities and the change of variables r = 1/u, find the radius R at
which a photon can follow a circular orbit. Hint: use £ = 0 for a null geodesic to find an



expression for 12, then rewrite in terms of du/dp.
. What would a fixed observer at r = R measure as the time period of the photon’s orbit?

. If this fixed observer flashes a signal each time the photon passes, at what interval would a
stationary observer at » — oo measure these flashes?



