
C7.5: General Relativity I

Problem Sheet 2

Please submit solutions in the collection boxes in the basement of the Mathematical Institute no

later than Monday 5th November, 4pm. Corrections to ashmore@maths.ox.ac.uk.

1. Energy-momentum tensor of a perfect fluid

Consider some distribution of matter with energy momentum tensor T ab. What is the 4-

momentum per unit volume and directional pressure measured by an observer with 4-velocity

V a?

The energy-momentum tensor of a perfect fluid is given by

T ab = (ρ+ P )UaU b + Pηab,

where ηab is the inverse metric in Minkowski space and Ua is the 4-velocity of the fluid. By

considering an observer at rest with respect to the motion of the fluid, explain the physical

meaning of ρ and P .

The equation of motion of a perfect fluid in an inertial frame is

∂aT
ab = 0.

In the remainder of the question you will show how the equations of fluid mechanics are compactly

encoded in this single expression.

First show that the tensor

hab = δab + UaUb,

obeys

1. habU
b = 0

2. habh
b
c = hac

3. haa = 3

Using these properties, explain why hab is a projector onto the 3-dimensional hypersurfaces

perpendicular to the fluid’s 4-velocity Ua. What is the meaning of the symmetric tensor

hab = ηach
c
b?
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By projecting the equation of motion parallel and perpendicular to the 4-velocity of the fluid

Ua, derive the equations

∂a(ρU
a) + P∂aU

a = 0, (ρ+ P )
dUa

dτ
+ hab∂bP = 0, (1)

where τ is the proper time of a particle moving with the fluid. The equations are the relativistic

versions of the continuity and Euler equations of fluid mechanics. Show that the fluid particles

move along geodesics when P = 0.

We now consider the non-relativistic approximation to equations (1). In the non-relativistic

approximation you will need to assume that

1. Ua = (1, ~u) |~u| � 1

2. P � ρ

3. |~u| ∂tP � |~∇P |

What is the physical intuition behind each of the approximations? (It may be helpful to restore

the speed of light c in the equations.) Using the approximation, show that

∂tρ+ ~∇ · (ρ~u) = 0, ρ
(
∂t + ~u · ~∇~u

)
= −~∇P.

2. Uniform acceleration and the equivalence principle

Let us start from a global inertial frame O in Minkowski space with coordinates xa = (t, x, y, z).

Now consider the transformation to a non-inertial frame O′ with coordinates x′a = (t′, x′, y′, z′)

such that

t =

(
1

g
+ z′

)
sinh

(
gt′
)
,

z =

(
1

g
+ z′

)
cosh

(
gt′
)
− 1

g

x = x′,

y = y′,

,

where g is a constant with units of acceleration.

1. For t′ � 1/g show that this transformation corresponds to a uniformly accelerated reference

frame in Newtonian mechanics.

2. Plot the trajectory of the point z′ = 0 in the inertial frame O.

3. Show that a clock at rest at z′ = h runs fast compared to a clock at rest at z′ = 0 by the

factor (1 + gh).

4. Use the equivalence principle to interpret this result in terms of gravitational time dilation.

5. What is the line element ds2 for a spacetime with a uniform gravitational field?
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3. Flat space in polar coordinates

Flat R2 has coordinates x1 and x2 and a metric with components g11 = g22 = 1, g12 = g21 = 0.

Changing to polar coordinates defined by(
x1

x2

)
=

(
r cosφ

r sinφ

)
,

1. Find the components of the metric.

2. Find the Christoffel symbols using:

(a) The geodesic equation as derived from the point-particle Lagrangian.

(b) The expression of the Christoffel symbols in terms of the metric

Γabc =
1

2
gad(∂bgcd + ∂cgbd − ∂dgbc).

(c) The transformation behavior of the Christoffel symbols under a change of coordinates.

3. Show that straight lines in R2 solve the geodesic equation in polar coordinates.

4. The covariant derivative

Together with the usual properties of a derivative, the covariant derivative is defined as a map

from (p, q) tensors to (p, q + 1) tensors. The action of the covariant derivative on a vector (a

(1, 0) tensor) with components va can be written as

∇bva = ∂bv
a + Γabcv

c.

1. Prove that ∇bva transforms as a (1, 1) tensor under general coordinate transformations

provided the Christoffel symbols transform as

Γ′abc =
∂xp

∂x′b

∂xq

∂x′c

(
∂x

′a

∂xr
Γrpq −

∂2x
′a

∂xp∂xq

)
.

2. Show that the above transformation behavior is implied by

Γabc = 1
2g
ad(∂bgcd + ∂cgbd − ∂dgbc).

3. What is the action of the covariant derivative ∇a on a scalar? Use this to show how ∇a
acts on a one-form ωa.

4. What is the action of the covariant derivative ∇a on a (p, q) tensor?
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5. 2d de Sitter space

Consider the two-dimensional de Sitter metric

ds2 = −du2 + cosh2 udϕ2,

where −∞ < u <∞ and 0 ≤ ϕ < 2π.

1. What is the proper length of the space-like curve defined by u = uc, where uc is constant?

2. Write down the Lagrangian for (affinely parametrised) geodesics and, using Lagrange’s

equations, compute the non-vanishing Christoffel symbols:

Γuϕϕ, Γϕuϕ, Γϕϕu.

3. Show that

J = cosh2 u ϕ̇, E = u̇2 − cosh2 u ϕ̇2,

are both conserved along geodesics. Hint: for an elegant derivation of the second conserved

quantity, you may want to compute the Hamiltonian and explain why it is conserved.

4. Consider a geodesic with initial condition ϕ̇(0) = 0. Show that J = 0 and E = u̇2.

5. Now consider the case J 6= 0. Introduce the variable v = tanhu and show that(
dv

dϕ

)2

=
E

J2
+ 1− v2.

Write down the most general solution v(ϕ) and discuss its behaviour as a function of the

ratio E/J2.

6. Infinitesimal symmetries

The Lie derivative of a type (2, 0) tensor Tab with respect to a vector field Xa is defined by

LXTab = Xc∂cTab + (∂aX
c)Tcb + (∂bX

c)Tac.

1. Show that you can replace ∂a with the Levi-Civita covariant derivative∇a in this expression,

so that LXTab = L∇XTab. Using this argue that the Lie derivative transforms as a tensor.

What is L∇XY a − LXY a if Y a is a (1, 0) tensor and ∇ is a general connection (do not

assume Γ is symmetric in its lower indices)?

2. Consider the infinitesimal transformation δxa = εKa generated by a vector field Ka. Show

that the action of an (affinely parametrised) geodesic

S =

∫ λ2

λ1

dλ gab
dxa

dλ

dxb

dλ
,
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is invariant under this transformation if

LKgab = 0.

Show that this can be equivalently expressed as

∇(aKb) = 0,

where ∇a is the covariant derivative associated to the metric gab (the Levi-Civita connection

for g). A vector field with this property is known as a Killing vector and generates an

infinitesimal symmetry of the geometry defined by the metric gab.

3. Show that the inner product gabK
aẋb is conserved along the geodesic.

4. Consider the two-dimensional de Sitter metric from problem 4. Show that the vector

field Ka with components Ku = 0 and Kϕ = 1 is a Killing vector and the corresponding

conserved quantity is J .

5. Show that the sum Xa +Y a and commutator [X,Y ]a = Xb∇bY a−Y b∇bXa of two Killing

vectors are also Killing vectors. Together with the Jacobi identity, this means that Killing

vectors generate a Lie algebra.

7. Maxwell equations in general coordinates

In a general spacetime, the sourceless Maxwell equations are given by

∇aF ab = 0, ∇aFbc +∇bFca +∇cFab = 0,

where Fab = −Fba. The Maxwell energy-momentum tensor is as

Tab =
1

4π

(
FacF

c
b +

1

4
F cdFcd gab

)
.

1. Show that

∇aTab = 0.

2. Show that Γbab = ∂a log
√
−|g|, where |g| is the determinant of the metric.

3. Show that the first Maxwell equation can be written as

∂a

(√
−|g|F ab

)
= 0.

4. Show that we can substitute covariant derivatives for partial derivatives in the second

Maxwell equation.

8. (Optional) Action principles and Lagrangians

This question is optional and will not be marked. It explores the relation between the two action

principles we have discussed in the lectures.
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The action for a massive free particle is given by

S0[x] = −m
∫

dτ = −m
∫

dλ

(
−gab

dxa

dλ

dxb

dλ

)1/2

,

where m is the particle rest mass and τ is proper time. This action cannot describe massless

particles, instead we can use

S1[x] =

∫
dλL =

∫
dλ gab

dxa

dλ

dxb

dλ
.

Both of these actions give rise to the same equations of motion, but S1 can also be used to

describe massless particles.

1. Convince yourself that S0 is invariant under reparametrisations λ 7→ λ′(λ) while S1 is

invariant under only λ 7→ λ+ a, where a is constant.

Consider a “parent action” S

S[x, e] =

∫
dλ

(
e−1gab

dxa

dλ

dxb

dλ
−m2e

)
,

where we have introduced an additional field e = e(λ).

2. Assuming e transforms under reparametrisations such that e(λ)dλ is invariant (a worldline

one-form), convince yourself that S is invariant under λ 7→ λ′(λ).

We will now see how S reduces to S0 or S1.

3. As e appears algebraically in the action (without derivatives), you can find its equation

of motion and substitute it back into the action. Convince yourself that the equation of

motion is

gab
dxa

dλ

dxb

dλ
+m2e2 = 0,

and so you can solve for e providing m 6= 0. Using this, show that S reduces to S0 and

so argue that S0 is valid only for massive particles. Convince yourself that as we did not

fix the reparametrisation invariance, S0 must have the same amount of reparametrisation

invariance as S.

4. Convince yourself that as e(λ)dλ is invariant under reparametrisations, you can always

pick a parametrisation or “gauge” in which e(λ) = 1. In this gauge, show that S reduces to

S1 up to a constant shift. Convince yourself that as we used some of the reparametrisation

freedom to reach S1, the resulting action will have a smaller symmetry (λ 7→ λ+ a in this

case).
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