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Overview

• We will initially focus on systems in cellular physiology and electrophysiology where the
spatial variation is not present, or at least, not important. Therefore only the temporal
evolution needs to be captured in equations and this typically (but not exclusively) leads to
ordinary differential equations.

• We will proceed to consider systems where there is explicit spatial variation, leading to
partial differential equation that additionally incorporate spatial effects; our focus will be
calcium dynamics and electrophysiology.

• We will then consider the role of delayed feedback in biological dynamical systems, such as
respiration and the hematopoietic system (i.e. the production of blood cells), exploring the
counter-intuitive dynamics that emerges.
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1 Transmembrane Ion Transport

1.1 Membrane transport

The cell membrane is a phospholipid bilayer separating the cell interior (the cytoplasm) and from
the extracellular environment. The membrane contains numerous proteins, and is approximately
7.5nm thick. The most important property of the cell membrane is its selective permeability: it
allows the passage of some molecules but restricts the passage of others, thereby regulating the
passage of materials into and out of the cell. Many substances penetrate the cellular membrane
at rates reflected by their diffusive behaviour in a pure phospholipid bilayer. However, certain
molecules and ions such as glucose, amino acids and Na+ pass through cell membranes much more
rapidly, indicating that the membrane proteins selectively facilitate transport.

The membrane contains water-filled pores with diameters of about 0.8nm, and protein-lined
pores, called channels or gates, which allow the passage of specific molecules. Both the intra-
cellular and extracellular environments comprise (among other things) a dilute aqueous solution
of dissolved salts, mainly NaCl and KCl, which dissociate into Na+, K+ and Cl− ions. The cell
membrane acts as a barrier to the free flow of these ions and to the flow of water.

The many mechanisms for facilitating transport across the cellular membrane can be divided
up into active and passive processes. An active process is one which requires the expenditure of
energy, while a passive process is one which results solely from the random motion of molecules,
for example, diffusion.

Passive mechanisms by which molecules are transported across the cell membrane include
osmosis, diffusion, and carrier-mediated mechanisms. Osmosis, i.e. the diffusion of water down its
concentration gradient, is the most important mechanism by which water is transported across the
cell membrane. Simple diffusion accounts for the passage of small molecules (e.g. Cl−) through
pores and or lipid-soluble molecules (such as oxygen and carbon dioxide) through the lipid bilayer.
Carrier-mediated diffusion refers to a process by which a molecule “hitches a lift” by binding to
a carrier molecule which is lipid soluble and can move readily through the membrane. Carrier-
mediated transport” occurs when a protein which sits in the membrane has an active site which may
be exposed either on the exterior or interior side of the membrane depending on the conformational
state of the protein. A substrate (e.g. glucose and amino acids) may bind to the protein in one
conformation: the protein then undergoes a conformational change, and the substrate unbinds on
the other side of the membrane.

The concentration differences that exist between the intracellular and extracellular environ-
ments are set up and maintained by active processes. One of the most important of these is the
Na+-K+ pump, which uses the energy stored in ATP molecules to pump Na+ out of the cell and

extra intra
Na+ 437 50
K+ 20 397

Table 1: Typical intracellular and extracellular ionic concentrations for the squid giant axon.
Units are mM=millimolar= 10−3M. 1M= 1 molar = 1 mole litre−1.
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K+ in. There are also a variety of exchange pumps which use the concentration gradient of one ion
to pump another ion against its concentration gradient, such as the Na+-Ca2+ exchanger, which
removes Ca2+ from the cell at the expense of allowing Na+ in. Differences in interior and exterior
ionic concentrations create a potential difference across the cell which also drives an ionic current
down ion-specific membrane channels. Typical intracellular and extracellular ionic concentrations
are shown in Table 1.

Figure 1: Representation of an exchange pump

1.1.1 Passive transport: Carrier Mediated Transport

Carrier-mediated transport occurs when a protein which sits in the membrane has an active site
which may be exposed either on the exterior or interior side of the membrane depending on the
conformational state of the protein. A substrate may bind to the protein in one conformation, the
protein undergoes a conformational change, and the substrate unbinds on the other side of the
membrane.

We describe here a simple model for carrier mediated transport. We suppose that the carrier
has two conformational states, and that in the first state, labelled Ci, the substrate binding site
is exposed on the cell interior, while in the second state, labelled Ce, the substrate binding site
is exposed on the cell exterior (see Figure 2). We suppose that substrate molecules outside the
cell (concentration Se) can bind to Ce to produce a complex Pe, and that the substrate molecules
inside the cell (concentration Si) can bind to Ci to produce a complex Pi. Furthermore, we assume
that Pi can conformally change into Pe and vice versa, and at the same rate as the conformational
changes of Ci and Ce (so that the binding of the substrate does not affect the conformational
changes of the protein). Thus the reaction scheme is

Si + Ci

k+
⇀↽
k−

Pi

k
⇀↽
k

Pe

k−
⇀↽
k+

Se + Ce (1)



Prof Waters Mathematical Physiology Notes. 4

Figure 2: A schematic of the phospholipid membrane double layer, with a gating protein in one
of two configurations, Ce and Ci, spanning the membrane, as part of a carrier mediated transport
system.

Ci

k
⇀↽
k

Ce, (2)

where we have assumed that the binding affinity of Si to Ci is the same as that of Se to Ce,
and that the two conformational states Ci and Ce are equally likely. To avoid the system simply
settling down to a steady state with zero flux, we assume that the substrate is supplied at a rate J
to the exterior and taken away at the same rate from the interior, and we wish to determine this
flux of substrate through the membrane as a function of the interior and exterior concentrations.
This may be achieved using mass action kinetics (see Mathematical Biology and Ecology), and
the computation is carried out on Problem sheet 1, question 1.

1.1.2 Active transport: the sodium-potassium pump

The carrier-mediated transport described above moves molecules down chemical gradients. Any
process that works against chemical or electrical gradients requires the expenditure of energy, and
is known as an active transport mechanism. We now give an example of such a process.

First we digress and introduce a little background terminology. Metabolism is the process of
extracting useful energy from chemical bonds. The common carrier of energy in the cell is the
chemical adenosine triphosphate (ATP). ATP is formed by the addition of an inorganic phosphate
group (HPO2−

4 ) to adenosine diphosphate (ADP). The process of adding a phosphate group to
a molecule is called phosphorylation. Since the three phosphate groups on ATP carry negative
charges, considerable energy is required to overcome the natural repulsion of like-charged phos-
phates as additional groups are added. Thus, the hydrolysis (the cleavage of a bond by water) of
ATP to ADP releases large amounts of energy.

The Na+-K+ pump pumps sodium ions out the cell against a steep electrochemical gradient,
while pumping potassium ions in. This pump alone consumes almost a third of the energy re-



Prof Waters Mathematical Physiology Notes. 5

quirement of a typical animal cell. The pump uses the energy stored in ATP which is released
when it is dephosphorylated into ADP, through the overall reaction scheme

ATP + 3Na+
i + 2K+

e → ADP + Pi + 3Na+
e + 2K+

i , (3)

where the subscripts i and e denote the intracellular and extracellular quantities respectively. The
individual components of the reaction are thought to be as follows. When the carrier protein
(Na+-K+ ATPase) is in its dephosphorylated state, three sodium binding sites are exposed to the
cell’s interior. When all three binding sites are filled, the carrier protein is phosphorylated by the
hydrolysis of ATP into ADP. This phosphorylation induces a conformational change, so that the
sodium binding sites are exposed to the cell exterior, and their binding affinity is reduced, causing
the release of sodium ions. At the same time, two potassium sites are exposed to the cells exterior.
When potassium ions have bound to these two sites the carrier protein is dephosphorylated,
inducing the reverse change in conformation, exposing the potassium binding sites to the cell
interior and reducing the binding affinity so that the potassium is released.

If we simplify this process slightly, assuming that there is a single binding site for sodium
and potassium, leading to a one-to-one exchanger rather than the three-for-two which actually
happens, then the detailed reaction scheme is

Na+ + C
k1
⇀↽
k−1

ATP
kp
→ ADP

NaC → NaCP
k2
⇀↽
k−2

Na+
e + CP, (4)

CP + K+
e

k3
⇀↽
k−3

KCP
k4
⇀↽
k−4

P + KC, (5)

KC
k5
⇀↽
k−5

K+
i + C, (6)

where the carrier protein is represented by C in its unphosphorylated, unbound state, CP in its
phosphorylated unbound state, NaC when bound to sodium and unphosphorylated, NaCP when
bound to sodium and phosphorylated, KC when bound to potassium and unphosphorylated, and
KCP when bound to potassium and phosphorylated. Using mass action kinetics, assuming that
intracellular potassium and extracellular sodium are removed at a constant rate J, leads to the
steady-state flow of ions through the pump

J =
J0[Na+

i ][K+
e ]

[Na+
i ] + α[K+

i ] + β[K+
e ]
, (7)
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Figure 3: Schematic diagram of the build up of charge on the cell membrane

where

J0 =
C0k3k4k5

k−3k−3[P ] + k−3k5 + k4k5
, (8)

α =
k−1kp + k2k−1 + k2kp)k−3k−4k−5
k1k2kp(k−3k−3[P ] + k−3k5 + k4k5)

, β =
k−1kp + k2k−1 + k2kp)k3k4k5

k1k2kp(k−3k−3[P ] + k−3k5 + k4k5)
, (9)

where C0 is the total concentration of carrier molecule, and [Na+e ] denotes the concentration
of sodium ions in the extracellular medium, etc. Note that for both carrier-mediated transport
and active transport (7) pump fluxes are linear in concentrations at small concentrations, but
saturate to a maximum value at large concentrations (a feature in common with enzyme catalysed
reactions).

1.1.3 The membrane potential

Different ion concentrations in the interior and exterior of a cell induce a potential difference
across the membrane, which is therefore influenced by the active and passive transport of ions
into and out of the cell. The membrane potential is fundamental to the study of electrophysiology
in diverse settings such as nerve signal propagation and the coordinated contraction of the heart.
To explore these applications in more detail we need to consider the electrical properties of the
cell membrane.

Suppose we have two reservoirs containing different concentrations of a positively charged ion
X+. We suppose that both reservoirs are electrically neutral to begin with, so that there is an
equal concentration of a negatively charged ion Y−. Now suppose that the reservoirs are separated
by a semi-permeable membrane which is permeable to X+ but not to Y−. Then the difference
in concentration of X+ on each side will lead to the flow of X+ across the membrane. However,
because Y− cannot diffuse through the membrane this will lead to a build up of charge on one side.
This charge imbalance sets up an electric field, which produces a force on the ions opposing further
diffusion of X+. it is important to realise that the actual amount of X+ which diffuses through
the membrane is small, and the excess charge all accumulates near the interface, so that to a good
approximation the solutions on either side remain electrically neutral. The potential difference at
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which equilibrium is established and diffusion and electric-field-generated fluxes balance is known
as the Nernst potential. We can derive an expression for it as follows.

If c denotes the concentration of an ion S then the flux of ions due to diffusion is J = −D∇c,
where D is the diffusion coefficient. To this we must add the flux due to the fact that the ion
carries a charge and is in the presence of an electric field, which is given by

J = −uzc
|z|
∇φ, (10)

where u is the mobility of the ion (defined as the velocity under a constant unit electric field), z
is the valence of the ion (so that z/|z| is either +1 or -1 and gives the sign of the force on the ion;
positive ions move down potential gradients, negative ions move up potential gradients), and φ is
the electric potential, so that −∇φ is the electric field. Thus the total flux is given by

J = −D∇c− uzc

|z|
∇φ, (11)

which is the Nernst-Planck equation. Now, there is a relationship (determined by Einstein) be-
tween the ionic mobility and the diffusion coefficient, which is

D =
uRT

|z|F
, (12)

where R is the universal gas constant, T is the temperature and F is Faraday’s constant. Fur-
thermore, since the membrane is thin we can replace the Nernst-Plank equation (11) by the
one-dimensional version

J = −D
(
dc

dx
+
zFc

RT

dφ

dx

)
, (13)

where x is a coordinate normal to the membrane. Now, at equilibrium the flux J is zero, giving

dc

dx
+
zFc

RT

dφ

dx
= 0, (14)

or equivalently

1

c

dc

dx
+
zF

RT

dφ

dx
= 0. (15)

Assuming that the interior of the membrane is at z = 0 while the exterior is at x = L, we can
integrate from 0 to L to give

[log c]L0 +
zF

RT
[φ]L0 = 0, (16)

so that

φi − φe =
zF

RT
log

(
ce
ci

)
. (17)
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We follow the standard convention of defining the potential difference across the cell membrane
as V = φi − φe, then the Nernst potential for S is

VS =
zF

RT
log

ce
ci

=
zF

RT
log

[Se]

[Si]
. (18)

Using the values of the intracellular and extracellular concentrations given in Table 1, typical
Nernst potentials for the squid giant axon for potassium and sodium are VK = −77mV (millivolt)
and VNa = 56mV. Note that when more than one ion is present, and they have different Nernst
potentials, the flux of each individual ion will not be zero even when there is no net current across
the membrane. For example, when −77mV < V < 56mVthere will be a flux of K+ out of the
cell and Na+ into the cell through ion specific channels. This flux is balanced by the action of the
Na+-K+ pump.

1.1.4 Ionic currents

The flow of ions across the cell membrane due to concentration differences leads to a build up
of charge near the cell membrane and a potential difference across the cell membrane. Thus the
cello membrane is effectively acting as a capacitor. The voltage (potential difference) across any
capacitor is related to the charge stored Q by

V =
Q

C
, (19)

where C is the capacitance.

Capacitance A simple example of capacitor is two conducting plates, separated by an insulator,
for example, an air gap. Connecting a battery to the plates, as illustrated, using wires of low
resistance leads to charge flowing onto/off the plates. It will equilibrate extremely quickly. Suppose
the charge on the plates is given by +Qeqm and −Qeqm respectively. The capacitance of the plates,
C, is defined to be

C =
Qeqm

V
> 0,

where C is a constant, independent of V . Thus the higher the capacitance, the better the plates
are at storing charge, for a given potential. The unit of C is the Farad, with 1 Farad equal to 1
Colomb per Volt.

If I is the ionic current out of the cell (the rate of flow of positive charges outwards) then the
stored charge changes according to

I = −dQ
dt
. (20)

Thus, assuming the capacitance is constant,

C
dV

dt
+ I = 0. (21)

This equation is the basis for much theoretical electrophysiology. The difference between the
various models arises in the expression used for the ionic current I.
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Figure 4: Schematic diagram of channel gating

The simplest model to use is to assume a linear dependence of I on V (as in Ohms law). For
a single ion S, with Nernst potential VS, this gives an ionic current

IS = gS(V − VS), (22)

where the constant gS is the ion-specific membrane conductance, since the current must be zero
when V = VS. If more than one ion is present the currents from different ions are simply added
together to produce the total ionic current I.

1.1.5 Gating

It is found experimentally that gS is not constant but depends on both V and time t. One proposed
explanation for this is that the channels are not always open, but may be open or closed, and that
the transition rates between open and closed states depends on the potential difference V . The
membrane conductance may then be written as gS, where gS is the constant conductance that
would result if all the channels were open, and n is the proportion of open channels.

For a generic ion, let n be the proportion of open ion channels. Denoting the open channels
by O and the closed channels by C, the reaction scheme is simply

C
α(V )
⇀↽
β(V )

O (23)

where α(V ), β(V ) represent voltage dependent rates of switching between the closed and open
states. Using a law of mass action we obtain

dn

dt
= α(V )(1− n)− β(V )n, (24)

or equivalently

τn(V )
dn

dt
= n∞(V )− n, (25)

where n∞(V ) = α/(α + β) is the equilibrium value of n and τn(V ) = 1/(α + β) is the timescale
for approach to this equilibrium. Both n∞ and τn can be determined experimentally.

1.1.6 Multiple gates

The simple model presented in §1.1.5 can be generalised to channels which contain multiple iden-
tical subunits, each of which can be in either the open or closed state.
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Suppose we start by assuming that the channel consists of two “gates”, which may both exist
in one of two states, open or closed. The ion channel is open only if both “gates” are open; the
ion channel is closed if any one gate within the ion channel is closed. We denote Si ∈ {0, 1, 2} as
the proportion of channels with exactly i gates open. We have

S0 + S1 + S2 = 1 (26)

and the reaction scheme

S0

2α(V )
⇀↽
β(V )

S1

α(V )
⇀↽

2β(V )
S2. (27)

The 2s arise because there are two possible states with one gate open and one gate closed. Since
each gate is identical we have lumped these two states into one variable S1. Using mass action
kinetics gives

dS0

dt
= β(V )(1− S0 − S2)− 2α(V )S0 (28)

dS2

dt
= α(V )(1− S0 − S2)− 2β(V )S2 (29)

where, in general, V is a function of time (and possibly space too). We could also write down an
equation for S1, but this equation is superfluous since S1 can be determined from (26).

Let n denote the proportion of open gates; thus

dn

dt
= α(V )(1− n)− β(V )n. (30)

Simple substitution shows that (26) , (28) and (29) are satisfied by

S0 = (1− n)2, S1 = 2n(1− n), S2 = n2. (31)

In fact, it is possible to derive a stronger result. Suppose

S0 = (1− n)2 + y0, S2 = n2 + y2, (32)

so that S1 = 2n(1− n)− y0 − y2. It then follows that

dy0
dt

= −2αy0 − β(y0 + y2),
dy2
dt

= −α(y0 + y2)− 2βy2. (33)

Figure 5: Schematic diagram of two identical gate units
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This linear system has eigenvalues −(α + β), −2(α + β), and so y0, y2 decay exponentially to
zero. Thus, regardless of the initial condition, the solution will still approach exponentially that
given by (30) and (31) (i.e. (30) and (31) defines a stable invariant manifold of the full system
(26), (28) and (29).

The analysis of a two-gated channel generalised easily to channels containing more gates. In
the case of k identical gates the fraction of open channels is nk, where n again satisfies (30). We
will find that a model with 4 gates agree with empirical observations of K+ channels, and will be
used below.

1.1.7 Non-identical gates

Often channels are controlled by more than one protein, with each protein controlling a set of
identical gates, but with the gates of each protein different and independent. Consider, for ex-
ample, the case of a channel with two types of gate, m and h say, each of which may be open
or closed. To illustrate we will assume that the channel has two m subunits and one h subunit.
With Sij the proportion of channels with i ∈ {0, 1, 2} of the m-gates open and j ∈ {0, 1} of the
h-gates open, the reaction scheme is

Simple substitution shows that the corresponding law of mass action equations are satisfied by

S00 = (1−m)2(1− h), S10 = 2m(1−m)(1− h), S20 = m2(1− h), (34)

S01 = (1−m)2h, S11 = 2m(1−m)h, S21 = m2h, (35)

so that the proportion of open channels is m2h, provided

dm/dt = α(V )(1−m)− β(V )m (36)

dh/dt = γ(V )(1− h)− δ(V )h. (37)

As before, such solutions form a stable invariant manifold.
We now have the framework in place to enable us to start to model nerve signal propagation.
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Figure 6: A schematic of an unmyelinated neuron, i.e. nerve cell.

1.2 Hodgkin-Huxley model

The nervous system is a communication system formed by nerve cells called neurons. Information
is propagated along long cylindrical segments called axons by electrochemical signals.

An important property of neurons is excitability. If a small current is applied to the cell for a
short time, then the membrane potential changes slightly, but returns directly to its equilibrium
potential (the resting potential) once the applied current is removed. However, is a sufficiently
large current is applied for a short time the membrane potential undergoes a large excursion (called
an action potential) before returning to its resting value. It is by the propagation of such action
potentials along the axons of neurons that signals are transmitted.

The most important landmark in the study of the generation and propagation of signals is the
work by Hodgkin and Huxley, who developed the first quantitative model of the propagation of
an electrical signal along a squid giant axon (where “giant” here refers to the size of the axon, not
the squid!). This work is remarkable, not only due to its influence on electophysiology, but also
for its stimulation of a new field in applied mathematics, the study of excitable systems, that has
resulted in a vast amount of research.

In the next Chapter we will consider the propagation of action potentials along the axon.
In building up to that model we first consider the Hodgkin-Huxley model of the excitability of
an axon without the extra complication of spatial variation in the membrane potential. Such a
system can be realised experimentally by inserting a thin electrode along the centre of the axon.
The interior of the axon will quickly equilibrate, and there will be no spatial variation in the
membrane potential, or any current, along the inside of the axon. This is known as the space
clamp technique.

If we suppose we are applying an external inward current Iext to the cell (for example due to
the experimental injection of electrolytes into the axon), then the total outward current is Ii−Iext,
where Ii is the outward ionic current as before. Then equation (21) gives

C
dV

dt
+ Ii − Iext = 0, (38)

where C is the membrane capacitance. In the squid giant axon, as in many neurons, the most
important ionic currents are due to the movement of sodium and potassium ions.

Experimentally it is found that the potassium conductance may be modelled by a gated channel
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of the form described in §1.1.5 with an exponent of 4, so that the conductance is gKn
4 where

τn(V )
dn

dt
= n∞(V )− n. (39)

While this seems to imply that the potassium channel is controlled by a protein with four identical
gates, the exponent is actually determined as a reasonable fit to measured ionic currents, and not
from any detailed physiological knowledge of the potassium channel itself. The equilibrium value
n∞ is found to be an increasing function of V. Thus at elevated potentials, n is increased, thereby
turning on, or activating, the potassium current. The Nernst potential for potassium is below the
resting potential, so that the potassium current is an outward current at potentials greater than
the resting potential. The function n(t) is called the potassium activation.

For the sodium conductance, experimental data suggests that there are two processes at work,
one which turns on the sodium current and one which turns it off. The model of Hodgkin-Huxley
assumes a channel controlled by proteins, with a conductance of the form gNam

3h where

τm(V )
dm

dt
= m∞(V )−m, τh(V )

dh

dt
= h∞(V )− h. (40)

Again, while this seems to imply a channel with three m gates and one h gate, the exponents
are determined as a reasonable fit to measured ionic currents, and not from a detailed knowledge
of the sodium channel itself. At the resting potential, m∞ is small and h∞ is close to one. For
elevated potentials h∞ decreases and m∞ increases. Thus m is called the sodium activation, and h
is called the sodium inactivation. The Nernst potential for sodium is above the resting potential,
so that the sodium current is an inward current at potentials greater than rest.

In (38), Ii is the ionic current into the exterior, which is made up from sodium, potassium and
leakage contributions. The leakage current across the membrane is the current which is not due
to ion channels, and thus is not ideally named. It is linear but is not zero at V = 0 (due to ion
pumps for example). Thus

IL = gL(V − VL), (41)

where gL and VL are constants. The Hodgkin-Huxley model is

Ii = INa + IK + IL = gNam
3h(V − VNa) + gKn

4(V − VK) + gL(V − VL), (42)

Aside VNa, VK , VL will vary with temperature as this will alter the value of the transmembrane
potential where the ion currents are zero (look up the Nernst equation and the Nernst potential);
below we only consider a constant temperature. Understanding the effect of varying temperature
is beyond the scope of these lectures.
Summary In this section, we have the framework for modelling the temporal variations of a
space clamped axon plasma membrane potential, which thus allows us to model nerve signal
propagation.
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1.2.1 The Huxley Hodgkin model for a space clamped axon

The Hodgkin Huxley equations for an axon are given by

0 = C
dV

dt
+ gNam

3h(V − VNa) + gKn
4(V − VK) + gL(V − VL)− Iext (43)

τm(V )
dm

dt
= m∞(V )−m, (44)

τh(V )
dh

dt
= h∞(V )− h, (45)

τn(V )
dn

dt
= n∞(V )− n. (46)

Note that equation (43) can be rewritten as

C
dV

dt
= Iext − (gNam

3h+ gKn
4 + gL)(V − Veqm) (47)

where

Veqm =
gNam

3hVNa + gKn
4VN + gLVL

gNam3h+ gKn4 + gL
(48)

is the resting potential or equilibrium potential. It is convenient to rewrite the Hodgkin Huxley
equations in terms of the deviation of the cell plasma membrane potential from the resting potential
ν = V − Veqm, where the resting potential Veqm = −70mV, in the following form

0 = C
dν

dt
+ gNam

3h(ν − νNa) + gKn
4(ν − νK) + gL(ν − νL)− Iext (49)

τm(ν)
dm

dt
= m∞(ν)−m (50)

τh(ν)
dh

dt
= h∞(ν)− h (51)

τn(ν)
dn

dt
= n∞(ν)− n (52)

where

νK = VK − Veq = −12mV, νNa = VNa − Veq = 115mV, νL = VL − Veq = 10.6mV,

gNa = 0.12Ω−1cm−3, gK = 0.036Ω−1cm−3, gL = 3× 10−4Ω−1cm−3, C = 1µFarad cm−2

with Ω denoting the Ohm, that is the unit of resistance. Note that the system is at equilibrium
when ν = 0.

We also have introduced

m∞(ν) =
αm(ν)

αm(ν) + βm(ν)
τm(ν) =

1

αm(ν) + βm(ν)
(53)
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where

αm(ν) = αm(V ), βm(ν) = βm(V ), (54)

and similarly for h∞(ν), n∞(ν), τh(ν), τn(ν).
Given the properties of the gating functions

m∞(ν), h∞(ν), n∞(ν), τm(ν), τh(ν), τn(ν),

we can see understand the qualitative form of a nerve pulse in the Huxley Hodgkin model for a
space clamped axon.

The membrane is excitable. The resting potential, which now corresponds to ν = 0 is stable
for a sufficiently small perturbation to the system. A finite perturbation causes an excursion in
the membrane potential away from the resting potential called an action potential. Suppose we
consider a large increase of ν away from the equilibrium (resting) potential of, say, 10mV. From
figure 7 we see that τm is small. Hence, from equation (50) we see that m can be approximated
by its pseudo-steady state on the timescale of a nerve pulse and we can take

m ∼ m∞(ν). (55)

Thus m increases as ν increases, and the conductivity of the membrane with respect to Na+

increases. Now since ν − νNa < 0, and positive ions flow move down potential gradients, then
sodium ions flow into the cell and the membrane potential ν increases. Hence m continues to
increase, and we initially have a positive feedback loop. However, as ν increases, h∞ drops and h
approaches h∞(ν) turning off the Na+ current, though on a slower timescale as τh is larger. As
ν increases, n∞ increases and the membrane conductivity with respect to K+ increases, though
again on a slower timescale. Now, since ν − νK > 0 potassium ions flow out of the cell and we
have that ν decreases. Now as ν drops, n∞ becomes smaller. The Na+ current remains essentially
off as m ≈ m∞(ν), small, for small ν. The K+ current is also turned off as n∞(ν) reduces, but
on a slow timescale. Hence the potential, ν drops below zero before resetting to the equilibrium
value ν = 0.

Figure 7: Graphs of the gating functions m∞(ν), h∞(ν), n∞(ν), τm(ν), τh(ν), τn(ν).
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1.2.2 Quantitative behaviour and model simplification

The observation that τm(ν) is smaller than all other timescales entails that m can be approximated
by its pseudo-steady state on the timescale of a nerve pulse and we can take

m ∼ m∞(ν), (56)

and this can be confirmed numerically.
We can also plot the variables n(t), h(t) during the action potential; a core approximation one can
deduce from this figure is that

n+ h ∼ 0.85 (57)

is a reasonable approximation for the duration of the action potential.

Why this occurs can also be seen as follows. Add the equations for n, h to obtain

τn(ν)

[
d

dt
(n+ h)

]
+ [τh(ν)− τn(ν)]

dh

dt
= (n∞(ν) + h∞(ν))− (n+ h),

Note also that
n∞(ν) + h∞(ν) ∼ const = 0.85

for all ν. We thus have the (a posteriori) observation that τn, (τh− τn) are sufficiently small that
the term

(τh(ν)− τn(ν))
dh

dt
does not sufficiently influence the dynamics to prevent n + h being reasonably approximated by
its asymptotic V dependence, n∞ + h∞.

Given these approximations the Huxley Hodgkin equations reduce to the two dimensional system

C
dν

dt
= −gNam3

∞(ν)(0.85− n)(ν − νNa)− gKn4(ν − νK)− gL(ν − νL) + Iext (58)

dn

dt
= αn(ν)(1− n)− βn(ν)n, (59)

Figure 8: The gating variables during a Huxley Hodgkin equations’ predicted action potential, via
numerical solution.
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with the experimentally determined parameter values

gNa = 0.120Ω−1cm−3, gK = 0.036Ω−1cm−3, gL = 3× 10−4Ω−1cm−3,

νNa = 115mV, νK = −12mV, νNa = 10.6mV, C = 1µFarad/cm2,

where “Ω” is one Ohm, the unit of resistance.

We now non-dimensionalise with v = ν/νNa and τ = t/[5ms], as τn(ν) ∼ O(5ms), and we have

ε
dv

dτ
= I∗ext − g(v, n)

def
= I∗ext −

[
m3
∞(v)(0.85− n)(v − 1) + γKn

4(v + vK) + γL(v − vL)
]

(60)

dn

dτ
= k(v, n)

def
=

1

τ ∗n(v)
[n∞(v)− n] , (61)

with

ε =
C

gNa[5ms]
= 2× 10−3, γK =

gK
gNa
∼ 0.3, γL =

gL
gNa
∼ 3× 10−3,

I∗ext =
Iext

gNaνNa
, vK = − νK

νNa
∼ 0.1, vL =

νL
νNa
∼ 0.1, τ ∗n(v) = τn(ν)/[5ms] ∼ O(1).

We can now sketch the nullclines, and noting the different timescales of the membrane potential
response to the gating variable response (as ε � 1) we can consider the phase plane trajectories
in terms of fast and slow dynamics.

Plotting nullclines We set I∗ext here.
The nullclines are curves on which dn/dt = 0 and dv/dt = 0.
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Classification of the equilibrium point One can deduce that the stationary point is stable
from qualitative features of the phase plane without resorting to the excessive calculation.
Perturbing around the stationary point as follows

n = n∞(0) + n̂, v = v̂ (62)

where 0 < |n̂|, |v̂| � 1 and linearising gives

d

dt

(
v̂
n̂

)
=

(
−gv/ε −gn/ε
kν kn

)(
v̂
n̂

)
def
= M

(
v̂
n̂

)
(63)

Recall that the stationary point is linearly stable if and only if

Tr(M) = −gv/ε+ kn < 0, εdet(M) = −gvkn + gnkv > 0. (64)

Hence we have that the stationary point is linearly stable.
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1.3 Fitzhugh-Nagumo equation

1.3.1 The Fitzhugh Nagumo equations

Here the nullclines associated with the functions g(n, v) and k(n, v) are approximated by, respec-
tively, a cubic polynomial and a straight line.
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In particular, if we let w = n− neqm, the Fitzhugh Nagumo equations are

ε
dv

dτ
= Av(v − a)(1− v)− w + I∗ext,

dw

dτ
= −w + bv,

where 0 < A ∼ O(10), a ∈ (0, 1) and, for excitable systems, b is sufficiently large to guarantee
there is only one equilibrium point. These have a directly analogous phase behaviour to the
Huxley-Hodgkin equations, though the quantitative details are different.

In the example sheets, you will also consider the possibility of oscillations rather than excitable
behaviour in the Fitzhugh-Nagumo equations once I∗ext 6= 0.


