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3 Calcium Dynamics

Intracellular calcium Ca2+ is important in a number of physiological systems, for instance skeletal
and cardiac muscle contraction, the regulation of the exocrine and endocrine systems, cell motility
and exocytosis. More than 99% of Ca2+ in the body is stored in skeletal bones, from where it
is released by hormonal stimulation to maintain an extracellular Ca2+ concentration of around
10−3M (1M = 1 molar = 1 mole/litre). In contrast, intracellular cytosolic Ca2+ concentrations
are low, around 10−7M, and therefore control mechanisms must exist to

(i) keep intracellular levels low,

(ii) enable rapid release when required.

In addition, under certain circumstances, for instance hormonal stimulation, oscillations in Ca2+

concentrations can occur.

Figure 1: Endoplasmic reticulum and sarcoplasmic reticulum

At the cellular level, high levels of calcium (∼ 10−3M) are also present in the internal cell compart-
ments, for instance the stores of the endomembrane system, generally denoted the endoplasmic
reticulum (ER) though with a specialised form, the sarcoplasmic reticulum (SR), in skeletal and
cardiac muscle.
Calcium release from the intracellular stores occurs through IP3 (inositol (1,4,5)-triphosphate)
receptors and Ryanodine (RyR) receptors and both modes of release can be present in the same
cell, for both contractile and non-contractile cells.

Figure 2: Oscillations in a hepatocyte (liver cell) stimulated by vasopressin.

Oscillations occur when cells are stimulated by neurotransmitters or hormones and manifest in a
limited range of stimulation intensity and are spiky with frequency increases on intensifying the
stimulation.
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3.1 The Two Pool Model

Mechanisms

Calcium release from the intracellular stores can be initiated via a hormone induced release of IP3

(inositol (1,4,5)-triphosphate), which diffuses to IP3 receptors on the store membranes, opening
gates in turn allowing the release of Ca2+.

Figure 3: Schematic of two pool model.

Ryanodine receptors on the store membrane are associated with Ca2+ induced Ca2+ release
(CICR), whereby uptake of calcium by Ryanodine induces a release of calcium from the store,
with a net effect of releasing calcium into the cytosol.
The model
Let

• c denote the concentration of Ca2+ in the cytosol

• cs denote the concentration of Ca2+ in the Ca2+ sensitive store.

We further assume that Ca2+ is constant in the IP3 sensitive store, so that the stimulus produces
a constant release rate of Ca2+. In addition, there are linear leakages of ions from the store, the
constant terms from which can be combined with IP3 release rate, to give an effective release rate.
In terms of the fluxes J+, J− for the Ryanodine Ca2+ uptake and the Ca2+ induced Ca2+ release,
the equations are therefore:
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We take Hill forms for the fluxes:

J+ =
V1c

n

Kn
1 + cn

, J− =
V2c

m
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Km
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cp

Kp
3 + cp

,

where m, p > n are positive integers and V1, V2, K1, K2, K3 are positive constants. Non-
dimensionalising with

c = K1u, t =
τ

k
, cs = K2v,

yields:
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Similarly

K2k
dv

dτ
= V2f(u, v),

and hence
dv

dτ
=

1

ε
f(u, v).

Parameter Values
With

k = 10s−1, K1 = 1µM, K2 = 2µM, K3 = 0.9µM, V1 = 65µMs−1, V2 = 500µMs−1,

ks = 1s−1, p = 4, n = 2, m = 2,

we have

α = 0.9, β = 0.13, γ = 2, δ = 0.004, ε = 0.04, µ =
r

10
∼ 1 if r = 10µMs−1.

Below, it will be useful to treat µ as a control parameter.
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3.1.1 Phase Plane Analysis

The equations are

du

dτ
= µ− u− γ

ε
f(u, v) = µ− u− γ dv

dτ
, ε

dv

dτ
= f(u, v),

f(u, v) = β
(

un

1 + un

)
−
(

vm

1 + vm

)(
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αp + up

)
− δv.

As ε� 1, we have fast and slow dynamics.

Fast Dynamics Unless f(u, v) ≈ 0 the variable v will evolve on a fast timescale. Let

T = τ/ε

be a fast time variable: we have

dv

dT
= f(u, v),

du

dT
+ γ

dv

dT
= 0

at leading order, and hence u+ γv is approximately constant.

Slow Dynamics When v is not changing rapidly, we work with the slow time variable τ , and we
have at leading order in ε that

f(u, v) = 0.

We can invoke the implicit function theorem to write this constraint in the form v = g(u), for
some function g(u), which we do not have an explicit form for at present. Then

du

dτ
+ γ

dv

dτ
= (1 + γg′(u))

du

dτ
= µ− u.

Phase Plane
First we consider the v nullcline f(u, v) = 0 and determine v = g(u). We define the following
functions

L(v) =
vm

1 + vm
,

J(u) = β
(

un

1 + un

)
,

K(u) =
up

αp + up
,

where m = 2, n = 2, p = 4, β = 0.13 and α = 0.9.
Neglecting δ � 1 in the first instance gives

f(u, v) = J(u)− L(v)K(u),

and so f = 0 corresponds to

L(v) =
J(u)

K(u)
. (1)
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Figure 4: Graphs of J(u) and K(u).

We now consider the forms of J(u) and K(u) (see figure (4)). We note that

un

1 + un
∼ un as u→ 0,

un

1 + un
∼ 1− 1

un
as u→∞. (2)

From these curves, we can deduce the form of

R(u) =
J(u)

K(u)
, (3)

noting that R = 1 and u = uc (see figure (5) for a plot of R(u) = J(u)/K(u)).
Now since we have that vm/(1 + vm) ≤ 1, the approximation that L(v) = R(u) cannot hold for
R > 1, i.e. the assumption that we can neglect the term involving δ is the expression for f(u, v)
breaks down for small u. In fact, the δ term is significant when either δv ∼ O(1) (i.e. v is large)
or J(u), K(u) ∼ O(δ) (i.e. u is small).
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Figure 5: Graph of R = J(u)/K(u).

Figure (5) is a plot of L(v) = vm/(1 + vm) (m = 2) versus u. However, we are seeking to plot
v versus u. We note that L(v) is monotonically increasing (see figure (6)), and that L(v) =
v2/(1 + v2) < v. Thus, so far the nullcline is given by figure 7 (where we note that vβ is such that
L(vβ) = β).

Figure 6: Graph of L(v) versus v.
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Figure 7: Approximation to the nullcline when terms of O(δ) are neglected.

When v →∞, the term δv becomes important again. The nullcline f(u, v) = 0 is then given by

J(u)− L(v)K(u)− δv = 0. (4)

Now, if v is large, L(v) ≈ 1 and hence (4) gives that

v ≈ 1

δ
(J(u)−K(u)), (5)

and we note (verify) that this has a turning point for u < uc. We also note that the righthand
side of (5) is zero at u = uc. For u small, we can also neglect the K(u) term (since p > n) so that

v ≈ 1

δ

βun

1 + un
. (6)

The approximation to the nullcline is now shown in figure 8.
To piece the curves together (which are each approximations) we consider an overlap region where
v � 1 and u ≈ uc. Starting again from

f(u, v) = J(u)−K(u)L(v)− δv = 0, (7)

we expand for v large, u close to uc as follows

J(uc) + (u− uc)J ′(uc) + · · · − (K(uc) + (u− uc)K ′(uc) + · · ·)
(

1− 1

vm
+ · · ·

)
− δv = 0. (8)

Now J(uc) = K(uc) and we note that K ′(uc) > J ′(uc) and so we have that

u− uc ≈
1

K ′(uc)− J ′(uc)

(
K(uc)

vm
− δv

)
, (9)
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Figure 8: Approximation to the nullcline

so that in the overlap region we have

v ∼ 1

δ1/(m+1)
, u− uc ∼ δm/(m+1). (10)

Graphs of v versus u in this region are shown in figure 9.
Putting all this information together, the nullcline corresponding to f(u, v) = 0, given by v = g(u),
is shown in figure 10.

Figure 9: Approximation to the nullcline for v large, u close to uc.
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Figure 10: Nullcline corresponding to f(u, v) = 0.

We now define various points on the curve, In particular, we define µ± to be those values of u
where

g′(µ±) = −1

γ
. (11)

This is important as on the fast timescale (to leading order) we have that u+γv is approximately
constant. The slope of these curves is −1/γ. See figure 11.

Figure 11: Determining µ±.
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We are now in position to analyse the dynamics of the system using phase-plane analysis. We
reiterate the governing equations are

d

dτ
(u+ γv) = µ− u (12)

dv

dτ
=

1

ε
f(u, v). (13)

The equilibrium point corresponds to f(u, v) = 0, u = µ. We start by considering the scenario
where

µ− < µ < µ+. (14)

Fast timescale
We consider T = τ/ε. The governing equations on this fast timescale are

dv

dT
= f(u, v),

d

dT
(u+ γv) = 0, (15)

so that we have rapid relaxation to f(u, v) = 0 (to leading order) with u+ γv = const.
Slow timescale
On this timescale, we have f(u, v) = 0 so that v = g(u), together with

d

dτ
(u+ γv) = µ− u. (16)

On this timescale the trajectory moves along the nullcline v = g(u).
We thus obtain periodic solutions when the equilibrium point µ is such that µ− < µ < µ+, and
the system moves between fast and slow dynamics. See figure 12.

Figure 12: Fast-slow dynamics.
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We can consider the behaviour of u, i.e. non-dimensional cytosolic calcium, as a function of time.
Here for example we consider the period of the oscillation. We refer again to figure 12.

Figure 13: Oscillations for u.

Note that the labels A-D on figure 12 do not correspond to those on figure 8 etc.
On DA and BC the timescales are O(ε) as we are in the fast dynamics regime.
On CD, we roughly have that g ≈ vβ, so that v ≈ vβ (and we can neglect the derivative of v with
respect to τ), and hence

du

dτ
≈ µ− u. (17)

Thus

u ≈ µ− (µ− uC) exp(−τ + τC), (18)

where we adopt the notation that uC etc refers to the value of u at the point C.
Now on CB u + γv = const. Hence we have that uB + γvB = uC + γvC . At B, uB = µ− � vB =
O(1/δ). Thus we have that u+γv = O(γ/δ) on BC. At C, vC ≈ β = O(1), so that on BC u jumps
up to O(1/δ) while v jumps down to O(1). At D we have that u jumps down to O(1). From (18),
we can show that the timescale on CD over which u drops from O(1/δ) to O(1) is

t = O
(

ln
1

δ

)
. (19)

Since at D we have that both u and v are O(1), then on AD we must have that u + γv = O(1).
Now, on AB, v = g(u) ≈ 1

δ
(J(u)−K(u)). This implies that

du

dτ
≈ µ− u

1 + γ
δ
(J ′(u)−K ′(u)

= δ
µ− u

δ + γ(J ′(u)−K ′(u))
= O(δ). (20)

Hence the timescale of the trajectory along AB (for u = O(1)) is O(1/δ).
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Since δ � 1, the dominant timescale of the period is the time spent on AB. Hence, to leading
order, the period is

∫ B

A
dτ =

∫ uB

uA

du

du/dτ
=

1

δ

∫ uB

uA
du
δ + γ(J ′(u)−K ′(u)

µ− u
. (21)

Now v = g(u) is determined from f(u, v) = 0. However, f(u, v) does not depend on µ, and hence
v = g(u) does not depend on µ. Furthermore, u at point D is determined from the solution of
g′(µ+) = −1/γ, so that uD is independent of µ (a similar argument applies for uB). At D we also
have that v = g(u) which implies that u + γv is independent of µ. Since at A, vA = g(uA), we
also have that uA is independent of µ. Hence, on AB, we have that

∂

∂µ

(∫ B

A
dτ

)
= −

∫ uB

uA
du
γ(J ′(u)−K ′(u))

δ[µ− u]2
< 0. (22)

Now

v = g(u) ≈ 1

δ
(J(u)−K(u)) (23)

on AB thus the numerator in (22) is 1 + γg′(u) and for uA, uB < µ we have g′(u) ≥ 0. Hence the
numerator is positive, and ∂P/∂µ < 0, so that the period decreases as µ increases. The amplitude
of the oscillation is approximated by uC , which is independent on µ.
Putting all this together, we the solution of u as a function of t in depicted in figure 13. The
oscillations are spiky, with an asymmetrical shape.

Figure 14: The phase plane corresponding to µ < µ−.
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Now suppose we consider the phase plane dynamics when

• µ < µ−

This is shown in figure 14. We see that the system exhibits excitable dynamics, with large
excursions in the phase plane. Eventually the trajectory returns to its steady state, and u decreases
on PQ since

d

dτ
(u+ γv) = µ− u < 0. (24)

Note that the perturbation must be large enough to initiate the phase-plane excursion.
The case with µ > µ+ has analogous dynamics.

3.2 Calcium Waves

Ca2+ waves can propagate within cells at speeds of 10-100 microns per second, especially in large
cells such as oocytes (fertilised eggs) where periodic wavetrains are observed; in frog oocytes,
spiral waves of calcium are also seen.

We consider the two pool model in a cell sufficiently large that we do not have a spatially homo-
geneous distribution of Ca2+, so that diffusion is important. In contrast, the calcium stores are
assumed to be no larger than normal cells and hence calcium is taken to be spatially homogeneous
in these compartments.

Thus, for a one dimensional wave, with the same non-dimensonalisation as above, we have

ut + γvt = µ− u+ νuxx, εvt = f(u, v),

with
ν = D/[kL2],

where D is the diffusion coefficient and L is the diffusive lengthscale.

Below, if ν � ε we have that diffusion is negligible and can be neglected; given we observe spatially
heterogeneous waves (in oocytes at least), we are not in this parameter regime. If ν � ε we have
uxx = 0 at leading order and again we do not a wave behaviour. Thus we require ν ∼ ε and we
take the diffusive lengthscale to be such that ν = ε.

For parameter values
D ∼ 10µm2s−1, k = 10s−1, ε = 0.04,

we have L ∼ 5µm, which is reasonable.

We seek travelling wave solutions and set u = u(ζ), v = v(ζ) where ζ = x+ st, where s > 0 is the
travelling wavespeed, to obtain:

s(u̇+ γv̇) = µ− u+ εü, εsv̇ = f(u, v),

where “dot” denotes d/dζ.

Diffusion entails that the large transitions in cytosolic calcium will occur at different values com-
pared to the spatially homogeneous analogue. We consider a path in (u, v) space of the form given
in figure 15, though we do not fix the values of u, v at the points A, B, C, D a priori.
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Figure 15: The phase plane.

Figure 16: The trajectory.

We expect the travelling wave to be of the form in figure 16.
On CD and AB we have slow dynamics, which is approximated by taking ε = 0 above to yield
the leading order equations

f(u, v) = 0, s

(
1 + γ

dg

du
(u)

)
u̇ = µ− u.

On BC we have fast dynamics and thus we write ζ = εX to give the equations

s(u′ + γv′) = u′′, (25)

v′ =
1

s
f(u, v), (26)

where prime denotes d/dX. Integrating on BC gives

u′ = s(u+ γv)− JBC (27)

where JBC is a constant of integration.

On BC, matching the fast and slow dynamics solutions, at the point B and also at the point C,
gives

JBC = s(uB + γvB) = s(uC + γvC), with f(uB, vB) = f(uC , vC) = 0. (28)

This is because on BC we have a second order autonomous set of differential equations, i.e. (26)
and (27), that match into the slow dynamics as X → ±∞. Gradients in the slow dynamical
regime are much smaller than in the fast dynamical regime, and hence in the asymptotic limit we
must have the fast dynamical system gradients tending to zero (so that u′, v′ → 0 as X → ∞).
The values of u, v therefore tend to equilibrium points of the fast dynamical system giving the
constraints (28) on inspection of (26), (27).

Writing U = u− uB, V = v − vB, F (U, V ) = f(u, v) we have

U ′ = s(U + γV ), V ′ =
1

s
F (U, V ),

dV

dU
=

1

s2
F (U, V )

U + γV
.
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Phase Plane
We require a phase plane connection between the saddle (1) and saddle (3). This requires the
unstable manifold (denoted ∗) to connect with the stable manifold (denoted ∗∗); see figure 17.

Figure 17: Connections between saddles in the phase plane.

We consider the cases s large, and s small (figure 18).

Figure 18: Trajectories for large and small s.



Prof Waters Mathematical Physiology Notes. 16

Figure 19: Determining the wave speed.

On DA Again we have fast dynamics. Analogously to BC we write ζ − ζ1 = εX1, where ζ1 is
displaces the DA front from the BC front along the travelling wave. This gives the equations

u′ = s(u+ γv)− JDA (29)

where prime denotes d/dX1 and

JDA = s(uD + γvD) = s(uA + γvA), with f(uD, vD) = f(uA, vA) = 0. (30)

Suppose uD is fixed. Then vD, uA, vA can be found. Writing U = u − uA, V = v − vA,
F (U, V ) = f(u, v) we once more have

U ′ = s(U + γV ), V ′ =
1

s
F (U, V ),

dV

dU
=

1

s2
F (U, V )

U + γV
.

We can find the travelling wavespeed by requiring a phase plane connection, as before. However,
the resulting wavespeed, denoted sD∗ , need not be the same as s∗, and thus there is no travelling
wave solution. Requiring sD∗ = s∗ constrains uD. Thus given uB, uD and consequently vD, uA, vA
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are determined.

In summary, there is a one parameter family of travelling wave solutions of different speeds,
obtained by varying uB.

Finally, note that the wavelength can be found by integrating

s

(
1 + γ

dg

du
(u)

)
u̇ = µ− u

on CD and AB.


