Mathematical physiology

Problem sheet 0. [2018]

1. The Lotka-Volterra system is given by

$$
\begin{aligned}
\dot{x} & =x(1-y) \\
\dot{y} & =\mu y(x-1) .
\end{aligned}
$$

Write the equations in terms of $X=x-1$ and $Y=y-1$, and show that there is a first integral of the equation of the form

$$
\begin{equation*}
\mu w(X)+w(Y)=E \tag{*}
\end{equation*}
$$

where E is constant. If the minimum value of $E=0$, give the definition of $w(X)$, and draw its graph.
We now wish to show that the trajectories satisfying $(*)$ form closed loops in the (X, Y) plane. To show this, define a function $r(\xi)$ by

$$
\begin{array}{ll}
\xi=+\sqrt{w(r)} & \text { if } \quad r>0 \\
\xi=-\sqrt{w(r)} & \text { if }
\end{array} \quad r<0, ~ l
$$

and show that $r(\xi)$ is a smooth, monotonically increasing function, give its behaviour as $\xi \rightarrow \pm \infty$, and draw its graph.
Now consider the transformation from (X, Y) to (ξ, η) space given by $X=r(\xi)$, $Y=r(\eta)$. Show that the trajectories in (X, Y) space are mapped to the curves

$$
\mu \xi^{2}+\eta^{2}=E
$$

and deduce that these form closed loops in (ξ, η) space and hence also (X, Y) space.
2. For the system

$$
\begin{gathered}
\dot{x}=\frac{x}{1+x}[F(x)-y], \\
\dot{y}=\beta[G(x)-y],
\end{gathered}
$$

where

$$
F(x)=(k-x)(1+x), \quad G(x)=\frac{b x}{1+x}
$$

where $k>1, b>k^{2}$ and $\beta>0$, show that there is at least one fixed point $\left(x_{0}, y_{0}\right)$ in the first quadrant. Assuming that $F^{\prime}\left(x_{0}\right)>0$, that this fixed point is unique, and that it is oscillatorily unstable, draw the nullclines of the system, and draw the trajectories in the phase plane.

Construct a bounding box for the trajectories, and show using the PoincaréBendixson theorem that the system has at least one stable limit cycle.
[Hint: you can assume there is a small circle C surrounding the fixed point on which all trajectories are directed outwards; the bounding box then consists of an inner curve C, and an outer curve which consists of straight (horizontal or vertical) lines, together with a curve A in the part of the quadrant where $\dot{x}<0$, $\dot{y}<0$. Show that in this region, when x is small,

$$
\frac{d y}{d x} \approx \frac{\beta y}{x(y-k)}>\frac{\beta k}{x(y-k)},
$$

and use this information to construct a suitable curve A to complete the construction of B.]
3. For a cubic nonlinearity, the travelling wave solutions of the nonlinear diffusion equation

$$
u_{t}=f(u)+u_{x x}
$$

satisfy the phase plane equations

$$
\begin{gathered}
U^{\prime}=-V, \\
V^{\prime}=f(U)-V,
\end{gathered}
$$

where $U^{\prime}=\frac{d U}{d \xi}, V^{\prime}=\frac{d V}{d \xi}$, and

$$
\begin{gathered}
(U, V) \rightarrow(1,0) \quad \text { as } \quad \xi \rightarrow-\infty \\
(U, V) \rightarrow(0,0) \quad \text { as } \quad \xi \rightarrow \infty
\end{gathered}
$$

where we take

$$
f(U)=2 U(U-1)(a-U)
$$

with $0<a<1$.
Carry out a phase plane analysis in the case $a<\frac{1}{2}$, assuming that $c>0$ and that a connecting trajectory exists, and draw the phase plane trajectories.
[Harder.] In order to prove that there is a unique connecting trajectory, we can use a monotonicity argument.
Show that the separatrix arriving at $(0,0)$ is determined by

$$
\begin{equation*}
\frac{d V}{d U}=c-\frac{f(U)}{V}, \quad V \approx \lambda_{0} U \quad \text { as } \quad U \rightarrow 0 \tag{*}
\end{equation*}
$$

where

$$
\lambda_{0}=\frac{1}{2}\left[c+\left\{c^{2}-4 f^{\prime}(0)\right\}^{1 / 2}\right] .
$$

Show that λ_{0} is a monotonically increasing function of c. Deduce that if two solutions of $(*)$ are denoted V_{1} and V_{2}, corresponding to two values $c_{1}<c_{2}$, then for small $U, V_{1}<V_{2}$.
Show that if $V_{1}=V_{2}$ at some $U>0$, then necessarily $V_{1}^{\prime} \geq V_{2}^{\prime}$ at that point. Using $(*)$, show that this contradicts the assumption that $c_{1}<c_{2}$. Hence deduce that $V(U ; c)$ is a monotonically increasing function of $c>0$.
Show that for large $c, V \approx c U$, so that in particular $V(1, c)>0$ and the arriving separatrix at the origin is above the leaving separatrix at $(1,0)$ for large c.
Show that for small c,

$$
\frac{1}{2} V^{2}+\int_{0}^{U} f(U) d U \approx 0
$$

and deduce that the separatrix arriving at $(0,0)$ passes through $\left(U_{0}, 0\right)$ where U_{0} is the minimum positive value such that $\int_{0}^{U_{0}} f(U) d U=0$. Deduce that if $U_{0}<1$, the arriving separatrix is below the leaving separatrix for small c.
Show that

$$
U_{0}=\frac{2}{3}(a+1)-\frac{2}{3}\left[\left(\frac{1}{2}-a\right)(2-a)\right]^{1 / 2}
$$

and deduce that U_{0} exists and is <1 iff $a<\frac{1}{2}$. Hence show that there is a unique connecting trajectory between $(1,0)$ and $(0,0)$ with $c>0$ if $a<\frac{1}{2}$, but no such trajectory exists for any $c>0$ if $a>\frac{1}{2}$.
4. Derive a suitably scaled form of the Michaelis-Menten model for the reaction

$$
S+E \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} C \xrightarrow{k_{2}} E+P
$$

and show that it depends on the parameters

$$
K=\frac{k_{-1}+k_{2}}{k_{1} S_{0}}, \quad \lambda=\frac{k_{2}}{k_{1} S_{0}}, \quad \varepsilon=\frac{E_{0}}{S_{0}},
$$

where S_{0} and E_{0} are the initial values of S and E. If $\varepsilon \ll 1$, show that the solution consists of an outer layer in which $t=O(1)$, and an inner layer in which $t=O(\varepsilon)$, and find explicit approximations for these. Hence show that S decreases linearly initially, but exponentially at large times.
5. An enzyme has n binding sites for a substrate S. If the enzyme complexes with j bound sites are denoted as C_{j}, write down the rate equations for the concentrations of S, P and $C_{j}, j=0,1, \ldots, n$, where $C_{0}=E$, satisfying the reactions

$$
S+C_{i-1} \stackrel{k_{i}}{\underset{k_{-i}}{ }} C_{i} \xrightarrow{k_{i}^{+}} C_{i-1}+P .
$$

Deduce that

$$
C_{0}=E_{0}-\sum_{1}^{n} C_{i}
$$

where E_{0} is the initial enzyme present. Use the quasi-steady state assumption to show that $R_{i}=0, i=1, \ldots, n$, where

$$
R_{i}=k_{i} S C_{i-1}-\left(k_{-i}+k_{i}^{+}\right) C_{i},
$$

and deduce that the reaction rate $r=d P / d t$ is given approximately by

$$
r=\frac{E_{0} \sum_{r=1}^{n} k_{r}^{+} \phi_{r} S^{r}}{1+\sum_{j=1}^{n} \phi_{j} S^{j}},
$$

where

$$
\phi_{j}=\prod_{i=1}^{j} \frac{1}{K_{i}}, \quad K_{i}=\frac{k_{-i}+k_{i}^{+}}{k_{i}} .
$$

Deduce that if $k_{1} \rightarrow 0$ with $k_{1} k_{n}$ finite, the reaction rate is approximated by the Hill equation

$$
r=\frac{k_{n}^{+} E_{0} S^{n}}{\prod_{i=1}^{n} K_{i}+S^{n}} .
$$

6. Suppose a population has a size distribution $\phi(a, t)$, where a is age and t is time: $\phi \delta a$ is the number of individuals with ages between a and $a+\delta a$. The birth rate $b(a)$ depends on age, as does the mortality rate $m(a)$. Show that

$$
\phi_{t}+\phi_{a}=-m \phi,
$$

and explain why the birth rate appears in the boundary condition

$$
\phi(0, t)=\int_{0}^{\infty} b(a) \phi(a, t) d a
$$

What is assumed about ϕ as $a \rightarrow \infty$?
Show that the steady size distribution with age of a population is given by the solution of the linear integral equation

$$
\phi(a)=\int_{0}^{\infty} G(a, \xi) \phi(\xi) d \xi
$$

where $G(a, \xi)$ should be specified.
Use the method of characteristics to show that for $t>a$, the solution for ϕ is

$$
\phi=\int_{0}^{\infty} b(\xi) \phi(\xi, t-a) d \xi \exp \left[-\int_{0}^{a} m(\eta) d \eta\right]
$$

Deduce an approximate equation for ϕ if $b(\xi)=0$ for $\xi<t_{m}, b=B$ (constant) for $t_{m}<\xi<t_{m}+t_{b}, b=0$ for $\xi>t_{m}+t_{b}$, where t_{b} is small, and hence show that if $x(t)=\phi\left(t_{m}, t\right)$, then

$$
x(t) \approx \Lambda x\left(t-t_{m}\right)
$$

where $\Lambda=B t_{b} \exp \left[-\int_{0}^{t_{m}} m(\eta) d \eta\right]$. Why is this obvious?

