
Mathematical physiology

Problem sheet 0. [2018]

1. The Lotka–Volterra system is given by

ẋ = x(1− y),

ẏ = µy(x− 1).

Write the equations in terms of X = x− 1 and Y = y− 1, and show that there
is a first integral of the equation of the form

µw(X) + w(Y ) = E, (∗)

where E is constant. If the minimum value of E = 0, give the definition of
w(X), and draw its graph.

We now wish to show that the trajectories satisfying (∗) form closed loops in
the (X, Y ) plane. To show this, define a function r(ξ) by

ξ = +
√

w(r) if r > 0,

ξ = −
√

w(r) if r < 0,

and show that r(ξ) is a smooth, monotonically increasing function, give its
behaviour as ξ → ±∞, and draw its graph.

Now consider the transformation from (X, Y ) to (ξ, η) space given by X = r(ξ),
Y = r(η). Show that the trajectories in (X, Y ) space are mapped to the curves

µξ2 + η2 = E,

and deduce that these form closed loops in (ξ, η) space and hence also (X, Y )
space.

2. For the system

ẋ =
x

1 + x
[F (x)− y] ,

ẏ = β[G(x)− y],

where

F (x) = (k − x)(1 + x), G(x) =
bx

1 + x
,

where k > 1, b > k2 and β > 0, show that there is at least one fixed point
(x0, y0) in the first quadrant. Assuming that F ′(x0) > 0, that this fixed point is
unique, and that it is oscillatorily unstable, draw the nullclines of the system,
and draw the trajectories in the phase plane.
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Construct a bounding box for the trajectories, and show using the Poincaré–
Bendixson theorem that the system has at least one stable limit cycle.

[Hint: you can assume there is a small circle C surrounding the fixed point on
which all trajectories are directed outwards; the bounding box then consists of
an inner curve C, and an outer curve which consists of straight (horizontal or
vertical) lines, together with a curve A in the part of the quadrant where ẋ < 0,
ẏ < 0. Show that in this region, when x is small,

dy

dx
≈

βy

x(y − k)
>

βk

x(y − k)
,

and use this information to construct a suitable curve A to complete the con-
struction of B.]

3. For a cubic nonlinearity, the travelling wave solutions of the nonlinear diffusion
equation

ut = f(u) + uxx

satisfy the phase plane equations

U ′ = −V,

V ′ = f(U)− V,

where U ′ =
dU

dξ
, V ′ =

dV

dξ
, and

(U, V ) → (1, 0) as ξ → −∞,

(U, V ) → (0, 0) as ξ → ∞,

where we take
f(U) = 2U(U − 1)(a− U),

with 0 < a < 1.

Carry out a phase plane analysis in the case a < 1

2
, assuming that c > 0 and

that a connecting trajectory exists, and draw the phase plane trajectories.

[Harder.] In order to prove that there is a unique connecting trajectory, we can
use a monotonicity argument.

Show that the separatrix arriving at (0, 0) is determined by

dV

dU
= c−

f(U)

V
, V ≈ λ0U as U → 0, (∗)

where
λ0 =

1

2
[c+ {c2 − 4f ′(0)}1/2].
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Show that λ0 is a monotonically increasing function of c. Deduce that if two
solutions of (∗) are denoted V1 and V2, corresponding to two values c1 < c2,
then for small U , V1 < V2.

Show that if V1 = V2 at some U > 0, then necessarily V ′

1 ≥ V ′

2 at that point.
Using (∗), show that this contradicts the assumption that c1 < c2. Hence deduce
that V (U ; c) is a monotonically increasing function of c > 0.

Show that for large c, V ≈ cU , so that in particular V (1, c) > 0 and the arriving
separatrix at the origin is above the leaving separatrix at (1, 0) for large c.

Show that for small c,

1

2
V 2 +

∫ U

0

f(U) dU ≈ 0,

and deduce that the separatrix arriving at (0, 0) passes through (U0, 0) where

U0 is the minimum positive value such that

∫ U0

0

f(U) dU = 0. Deduce that if

U0 < 1, the arriving separatrix is below the leaving separatrix for small c.

Show that
U0 =

2

3
(a+ 1)− 2

3

[(

1

2
− a

)

(2− a)
]1/2

,

and deduce that U0 exists and is < 1 iff a < 1

2
. Hence show that there is a

unique connecting trajectory between (1, 0) and (0, 0) with c > 0 if a < 1

2
, but

no such trajectory exists for any c > 0 if a > 1

2
.

4. Derive a suitably scaled form of the Michaelis-Menten model for the reaction

S + E
k1
⇋
k
−1

C
k2
→ E + P,

and show that it depends on the parameters

K =
k−1 + k2
k1S0

, λ =
k2
k1S0

, ε =
E0

S0

,

where S0 and E0 are the initial values of S and E. If ε ≪ 1, show that the
solution consists of an outer layer in which t = O(1), and an inner layer in
which t = O(ε), and find explicit approximations for these. Hence show that S
decreases linearly initially, but exponentially at large times.

5. An enzyme has n binding sites for a substrate S. If the enzyme complexes
with j bound sites are denoted as Cj, write down the rate equations for the
concentrations of S, P and Cj, j = 0, 1, . . . , n, where C0 = E, satisfying the
reactions

S + Ci−1

ki
⇋
k
−i

Ci

k+
i

→ Ci−1 + P.

Deduce that

C0 = E0 −

n
∑

1

Ci,
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where E0 is the initial enzyme present. Use the quasi-steady state assumption
to show that Ri = 0, i = 1, . . . , n, where

Ri = kiSCi−1 − (k−i + k+

i )Ci,

and deduce that the reaction rate r = dP/dt is given approximately by

r =
E0

∑n
r=1

k+
r φrS

r

1 +
∑n

j=1
φjSj

,

where

φj =

j
∏

i=1

1

Ki

, Ki =
k−i + k+

i

ki
.

Deduce that if k1 → 0 with k1kn finite, the reaction rate is approximated by
the Hill equation

r =
k+
nE0S

n

∏n
i=1

Ki + Sn
.

6. Suppose a population has a size distribution φ(a, t), where a is age and t is
time: φ δa is the number of individuals with ages between a and a + δa. The
birth rate b(a) depends on age, as does the mortality rate m(a). Show that

φt + φa = −mφ,

and explain why the birth rate appears in the boundary condition

φ(0, t) =

∫

∞

0

b(a)φ(a, t) da.

What is assumed about φ as a → ∞?

Show that the steady size distribution with age of a population is given by the
solution of the linear integral equation

φ(a) =

∫

∞

0

G(a, ξ)φ(ξ) dξ,

where G(a, ξ) should be specified.

Use the method of characteristics to show that for t > a, the solution for φ is

φ =

∫

∞

0

b(ξ)φ(ξ, t− a) dξ exp

[

−

∫ a

0

m(η) dη

]

.

Deduce an approximate equation for φ if b(ξ) = 0 for ξ < tm, b = B (constant)
for tm < ξ < tm + tb, b = 0 for ξ > tm + tb, where tb is small, and hence show
that if x(t) = φ(tm, t), then

x(t) ≈ Λx(t− tm),

where Λ = Btb exp
[

−
∫ tm
0

m(η) dη
]

. Why is this obvious?
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