
Mathematical physiology

Problem sheet 4.

1. The delayed logistic equation is

ẋ = αx(1− x1), x1 = x(t− 1).

Show that the steady solution x = 1 is oscillatorily unstable if α > 1
2
π.

When α is large (a value α > 3 is sufficient), the resulting oscillations take
on the appearance of periodic isolated pulses. Find an approximation to this
solution by assuming x ≈ eαt for t < 0, and integrating forward using the
method of steps to find the solution in 0 < t < 1, then in 1 < t < 2 and finally
in 2 < t < 3. [You should write the solution in terms of φ = ln x.]

Show that, approximately,

φ = αt− eα(t−1), 0 < t < 1;

using this, show that

φ ≈ αt+ eα
[

e−eα(t−2)

− 1
]

, 1 < t < 2,

and using this, show that

φ ≈ αt+ eα
[

e−eα(t−2)

− 1
]

, t > 2,

where the last approximation is valid for t < 2.5.

Show that for t >∼ 2,

φ ≈ α(t− P ), P =
eα

α
,

and deduce that the solution is periodic with approximate period P .

Show that the maximum and minimum values of x are

xmax ≈ eα−1, xmin ≈ αe2α−eα .

Sketch the form of the solution for x(t). Why is the approximate solution
already good for α = 3?

2. In respiratory physiology, what is meant by the minute ventilation? Describe
the way in which respiration is controlled by the blood gas concentrations at
the central and peripheral chemoreceptors.

The Mackey-Glass model is a one compartment model of respiratory control,
and can be represented by the equations

Kṗ = M − pV̇ ,
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V̇ = V̇ (pτ );

explain what the various terms represent, and their physiological interpretation.

Suppose that
V̇ = G[p− p0]+,

and that M = 200 mmHg l(BTPS) min−1, p0 = 35 mmHg, K = 40 l(BTPS),
G = 2 l(BTPS) min−1 mmHg−1, τ = 0.2 min. Show how to non-dimensionalise
the equations to obtain the dimensionless form

ṗ = α[1− (1 + µp)v],

v = [p1]+,

and give the definitions of α and µ. Check that they are dimensionless, and
find their values.

3. A simplified version of the Grodins model describes CO2 partial pressures in
arteries, veins, brain and tissues by the equations

KLṖaCO2 = −V̇ PaCO2 + 863KCO2Q[PvCO2 − PaCO2 ],

KCO2KBṖBCO2 = MRBCO2 +KCO2QB[PaCO2(t− τaB)− PBCO2 ]

KCO2KTṖTCO2 = MRTCO2 + (Q−QB)KCO2 [PaCO2(t− τaT )− PTCO2 ],

with the venous pressure being determined by

QPvCO2 = QBPBCO2(t− τvB) + (Q−QB)PTCO2(t− τvT).

Explain the meaning of the equations and their constituent terms.

Use values KL = 3 l, V̇ ∼ V ∗ = 5 l min−1, 863KCO2Q = 26 l min−1, KB = 1 l,
Q = 6 l min−1, QB = 0.75 l min−1, KT = 39 l, to evaluate response time scales
for arterial, brain and tissue CO2 partial pressures.

Deduce that for oscillations on a time scale of a minute, one can assume that
the arterial pressure is in quasi-equilibrium, and that the tissue (and thus also
venous) partial pressures are approximately constant.

Hence derive an approximate expression for PaCO2 in terms of the ventilation
V̇ .

4. Red blood cell precursors are produced from pluripotential stem cells in the bone
marrow at a rate F . They mature for a period of τ days before being released
into the blood, where they circulate for a further A days. If the apoptotic rates
in bone marrow and blood are δ and γ, respectively, show that the developing
cell density p and circulating RBC density e satisfy the equations

∂p

∂t
+

∂p

∂m
= −δp,
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∂e

∂t
+

∂e

∂a
= −γe,

for 0 < m < τ and 0 < a < A, where

p(t, 0) = F [E(t)], e(t, 0) = p(t, τ),

and we assume F depends on the total circulating blood cell population,

E =
∫ A

0
e da.

Solve the equations using the method of characteristics, and hence show that
for t > τ + A, E satisfies

Ė = F [Eτ ]e
−δτ − F [EA+τ ]e

−δτ−γA − γE, t > τ + A.

Compare this model to that which assumes no age limit to the circulating RBC.
Under what circumstances does the model reduce to the no age limit model?

Suppose that F = F0f , where f is O(1) and is a positive monotone decreasing
function. Show how to non-dimensionalise the model to the form

Ė = µ[f(E1)− f(EΛ+1)e
−µΛ − E],

where µ = γτ and Λ = A/τ . Supposing that A = 120 days and τ = 6 days,
explain why you might expect µ to be small.

Write down an equation for the exponent σ in solutions ∝ exp(σt) describing
small perturbations about the steady state, and show that the steady state is
stable if |f ′| < 1

2
.

5. The Hopf bifurcation curve for the equation

σ = −α− Γe−σ

is defined parametrically by

Γ0(α) =
Ω

sinΩ
, α = −

Ω

tanΩ
,

for Ω ∈ (0, π). By expanding for small Ω, show that

Γ0 = 1 + 1
6
Ω2 + 7

360
Ω4 + 31

15120
Ω6 +O(Ω8),

and that
α + 1 = 1

3
Ω2 + 1

45
Ω4 + 2

945
Ω6 +O(Ω8).

Deduce that

Γ0 = 1 + 1
2
(α + 1) + 3

40
(α + 1)2 − 9

2800
(α + 1)3 +O[(α + 1)4],
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i. e.,

Γ0 ≈ 1 + 0.5(α + 1) + 0.075(α + 1)2 − 0.0032(α + 1)3 +O[(α + 1)4].

Plot Γ0 versus α using suitable graphical software, and show that an accurate
quadratic approximation for α ∈ (−1, 2) is

Γ0 ≈ 1 + 0.5(α + 1) + 0.058(α + 1)2,

and that an accurate cubic approximation for α ∈ (−1, 5) is

Γ0 ≈ 1 + 0.5(α + 1) + 0.075(α + 1)2 − 0.005(α + 1)3.

Can you find a value of c for which

Γ0 ≈ 1 + 0.5(α + 1) + 0.075(α + 1)2 − 0.0032(α + 1)3 + c(α + 1)4

provides an accurate approximation for larger values of α?

Show (plot it and compare with the quadratic approximation) that a better two
coefficient approximation is given by

Γ0 =
1 + b(α + 1) + c(α + 1)2

1 + c(α + 1)
,

if b = 0.65 and c = 0.15. Why would these values of b and c be chosen? Show
(graphically) that an even better approximation is obtained if b = 0.69 and
c = 0.3. (The maximum error for α < 100 is less than 0.05.) How could you
extend this type of approximation to larger values of α?

6. In a model for the evolution of the resting phase cells in a blood cell maturation
model, the cell density M is given by

∂M

∂t
+

∂M

∂ξ
= −RM +Q,

where ξ is the maturation variable,

Q =











2e−γτR[t− τ, ξ − τ ]M [t− τ, ξ − τ ], ξ > τ, t > τ,

2e−(γ0+V0)τe(γ0+V0−γ)ξV0R0(t− τ)N0(t− τ), ξ < τ, t > ξ,

If R = (1 + λ)R0, λ = 2e−γτ − 1, γ0 + V0 = γ, and all these quantities and also
N0 are constant, then the equation for M can be written as

∂M

∂t
+

∂M

∂ξ
= −RM + (1 + λ)RMτ,τ ,

with initial data being

M = M0 = N0V0 on ξ = 0 and t > ξ.
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By careful consideration of how the characteristic equations are solved, show
that for t > ξ, M = M(ξ) ≡ M0u[(ξ − τ)/τ ], where u(η) satisfies

du

dη
= −αu− Γu1,

and α = Rτ , Γ = −(1 + λ)Rτ , and u = 1 for η ∈ [−1, 0).

By taking the Laplace transform of the equation (exercising due care with the
delayed term), show that the Laplace transform U(p) of u is given by

U(p) =
h(p)

f(p)
,

where
f(p) = p+ α + Γe−p

and

h(p) = 1− Γ

(

1− e−p

p

)

.

Deduce that U can also be written as

U(p) =
Λep

p [(p+ α)ep + Γ]
+

1

p
,

where
Λ = λRτ.

Hence show that if the inversion contour for U is completed as a square with
upper and lower sides at Im p = ±(n+ 1

2
)π, with n even for Γ < 0, as here, then

by taking the limit as n → ∞, u can be found as

u =
∞
∑

j=−∞

cj exp (pjη) ,

where pj are the zeros of f(p) (p0 is the real root, and p−j is the copmplex
conjugate of pj. Write down the definition of the constants cj in terms of pj,
and show that they can be expressed as

cj =
Λ

pj (1 + α + pj)
,

so that cj = O(1/j2) for j ≫ 1.

5


