

Figure 1: $\Gamma(\alpha)$ defined by (1), together with its asymptote, $\Gamma=\alpha$.

Plots for question 4.5

The curve defined defined parametrically (see figurer 1) by

$$
\begin{equation*}
\Gamma(\alpha)=\frac{\Omega}{\sin \Omega}, \quad \alpha=-\frac{\Omega}{\tan \Omega} \tag{1}
\end{equation*}
$$

for $\Omega \in(0, \pi)$ has the series solution

$$
\begin{equation*}
\Gamma \approx 1+0.5(\alpha+1)+0.075(\alpha+1)^{2}-0.0032(\alpha+1)^{3}+O\left[(\alpha+1)^{4}\right] \tag{2}
\end{equation*}
$$

Figure 2 shows the quadratic approximation

$$
\begin{equation*}
\Gamma \approx 1+0.5(\alpha+1)+0.058(\alpha+1)^{2} \tag{3}
\end{equation*}
$$

figure 3 shows the cubic approximation

$$
\begin{equation*}
\Gamma \approx 1+0.5(\alpha+1)+0.075(\alpha+1)^{2}-0.005(\alpha+1)^{3} \tag{4}
\end{equation*}
$$

Efforts to find a value c such that the quartic approximation

$$
\begin{equation*}
\Gamma \approx 1+0.5(\alpha+1)+0.075(\alpha+1)^{2}-0.0032(\alpha+1)^{3}+c(\alpha+1)^{4} \tag{5}
\end{equation*}
$$

provides an improved approximation for larger values of α do not fare so well (figure 4.

Figure 2: Quadratic approximation given by (3).

Figure 3: Cubic approximation given by (4).

Figure 4: A plot of (5) using a value $c=-0.0002$. While the approximation is slightly improved for $\alpha>5$, it is less good at smaller α.

The rational approximation given by

$$
\begin{equation*}
\Gamma=\frac{1+b(\alpha+1)+c(\alpha+1)^{2}}{1+c(\alpha+1)} \tag{6}
\end{equation*}
$$

with $b=0.65$ and $c=0.15$, is shown in figure 5 . With $b=0.69$ and $c=0.3$ (figure 6 , the approximation is essentially perfect. (The maximum error for $\alpha<100$ is less than 0.05.)

Figure 5: The rational approximation (6), with $b=0.65, c=0.15$.

Figure 6: The rational approximation (6), with $b=0.69, c=0.3$.

