Problem sheet 3

1. Overland flow Overland flow on a hill slope is described by the equation

$$
\frac{\partial h}{\partial t}+c h^{m} \frac{\partial h}{\partial x}=E
$$

where $E=P-I$ is the excess rainfall rate, being the difference between precipitation and infiltration rates. The equation is to be solved in $x>0$, and the initial and boundary condition are

$$
h=0 \quad \text { at } \quad t=0, x>0 \quad \text { and } \quad x=0, t>0 .
$$

First consider the case of constant $E>0$. Solve the equation and sketch the solution at various times.
Next, consider the case where $E(t)$ is time dependent, such that $E \geq 0$ for $0 \leq t \leq t_{*}$, and $E<0$ for $t>t_{*}$. Find an implicit expression for the solution in terms of integrals of E for $t \leq t_{*}$.
For $t>t_{*}$, a drying front moves down the slope (behind which $h=0$). Determine the position of the front $x_{d}(t)$ as a function of time and hence find the complete solution for all $t>0$.
2. St Venant equations Derive the St Venant equations from first principles in the form

$$
\begin{gathered}
\frac{\partial A}{\partial t}+\frac{\partial}{\partial x}(A u)=0 \\
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}=g S-\frac{\tau \ell}{\rho A}-g \frac{\partial \bar{h}}{\partial x}
\end{gathered}
$$

indicating the meaning of the various terms.
Manning's law corresponds to taking $\tau=\rho g n^{2} u^{2} / R^{1 / 3}$, where $R=A / \ell$ is the hydraulic radius. Assuming a triangular cross-section with transverse bed angle β, find appropriate expressions for τ and \bar{h} in terms of u and A.
Non-dimensionalise the resulting equations using a length scale L and discharge scale Q to obtain

$$
\begin{gathered}
\frac{\partial A}{\partial t}+\frac{\partial}{\partial x}(A u)=0 \\
\varepsilon F^{2}\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}\right)=1-\frac{u^{2}}{A^{2 / 3}}-\varepsilon \frac{\partial}{\partial x}\left(A^{1 / 2}\right)
\end{gathered}
$$

and define the parameters ε and F. Assuming that $\varepsilon \ll 1$ and $F \ll 1$, show that A satisfies the approximate equation

$$
\frac{\partial A}{\partial t}+\frac{4}{3} A^{1 / 3} \frac{\partial A}{\partial x}=\frac{1}{4} \varepsilon \frac{\partial}{\partial x}\left(A^{5 / 6} \frac{\partial A}{\partial x}\right)
$$

A sluice gate on the river is suddenly opened so that the cross-sectional area there increases from A_{-}to A_{+}. The hydrograph is measured a distance L downstream. Sketch the hydrograph for the cases (i) $\varepsilon=0$ and (ii) $0<\varepsilon \ll 1$ (no detailed calculation is required).
3. Surface waves Show that with a suitable choice of non-dimensionalisation, the St Venant equations for a triangular-shaped cross section with Manning's roughness law, can be written in the form

$$
\begin{gathered}
\frac{\partial A}{\partial t}+\frac{\partial}{\partial x}(A u)=0 \\
F^{2}\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}\right)=1-\frac{u^{2}}{A^{2 / 3}}-\frac{1}{2 A^{1 / 2}} \frac{\partial A}{\partial x}
\end{gathered}
$$

giving the definition of F. Write down the uniform steady state with dimensionless discharge 1.

Show that small perturbations to the steady state can propagate up and downstream if $F<F_{1}$, but can only propagate downstream if $F>F_{1}$; and that they are unstable if $F>F_{2}$. Give the values of F_{1} and F_{2}.
4. Anti-dunes A simple model of bed erosion based on the St Venant equations can be written in dimensionless form as

$$
\begin{gathered}
\varepsilon h_{t}+(h u)_{x}=0, \\
F^{2}\left(\varepsilon u_{t}+u u_{x}\right)=-\eta_{x}+\delta\left(1-\frac{u^{2}}{h}\right), \\
h\left(\varepsilon c_{t}+u c_{x}\right)=E(u)-c=-s_{t},
\end{gathered}
$$

where $h=\eta-s$, and $E(1)=1$. Briefly explain the meaning of the terms in this model, and the physical significance of the dimensionless parameters ε, δ and F.

By considering the stability of the steady state $u=h=c=1$, and assuming that $\varepsilon \ll 1$ while δ and F are $\mathcal{O}(1)$, show that instability can occur depending on the sign of $E^{\prime}(1)$ and the size of F.

Find the phase difference between surface and bed profiles in the limit of small and large wavenumbers ($k \rightarrow 0$ and $k \rightarrow \infty$).
5. Eddy-viscosity model Derive the Exner equation relating bed elevation s and bedload transport q.

Supposing the bedload is a function of the shear stress $q=q(\tau)$, show that the equation can be written in dimensionless form as,

$$
\frac{\partial s}{\partial t}+q^{\prime}(\tau) \frac{\partial \tau}{\partial x}=0
$$

An eddy-viscosity model for turbulent flow over linearised topography leads to the following approximate expression for the dimensionless shear stress,

$$
\tau=\left[1-s+\int_{0}^{\infty} K(\xi) \frac{\partial s}{\partial x}(x-\xi, t) \mathrm{d} \xi\right],
$$

where the kernel is $K(x)=\mu / x^{1 / 3}$, and $\mu>0$ is constant.
Making use of this expression, examine whether linear perturbations to the steady state $s=0$ are unstable. Which direction do the perturbations travel?
[Hint: in your calculation you will need to evaluate the integral $\int_{0}^{\infty} \xi^{-1 / 3} e^{-i k \xi} d \xi$, for which you can use contour integration to find the value $e^{-i \pi / 3} \Gamma\left(\frac{2}{3}\right) k^{-2 / 3}$, where $\Gamma(\nu)=$ $\int_{0}^{\infty} t^{\nu-1} e^{-t} d t$ is the gamma function.]

