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C5.7 Topics in Fluid Mechanics 1–1

1 A Brief Refresher

1.1 The Navier-Stokes equations

The velocity field of a fluid of density ρ, viscosity µ satisfies the Navier–Stokes equations

ρ
Du

Dt
= −∇p+ F+ µ∇2u,

Dρ

Dt
+ ρ∇·u = 0, (1.1)

where p is the pressure and F is a body force (i.e. a force that acts on the whole body,
not just at the surface; most often we shall have that F = ρg, the force per unit volume
due to gravity). The material derivative

D

Dt
() ≡

[
∂

∂t
+ u·∇

]

().

The first of the equations in (1.1) comes from a consideration of the conservation of mo-
mentum, whilst the second comes from the conservation of mass. A detailed derivation
is given in the appendix (and is not examinable).

If the typical flow speed is U , the length scale of the flow is L then a typical time
scale is L/U . We would like to non-dimensionalize (1.1) but we need to choose a relevant
pressure scale p∗. If we continue regardless and scale the body force with p∗/L then we
find that

Du

Dt
=

p∗

ρU2
(−∇p+ F) +

1

Re
∇2u (1.2)

where

Re =
ρUL

µ
(1.3)

is the Reynolds number and measures the relative importance of inertia and viscosity.
One way to see this is to write

Re =
ρU2

µU/L
=
p∗inertia
p∗viscous

where p∗inertia = ρU2 is the important pressure scale when the left hand side of (1.2)
is important (i.e. when the inertia of the liquid is important) and p∗viscous = µU/L is
the important pressure scale when the u dependence on the right hand side of (1.2) is
important (i.e. when the viscosity of the liquid is important).
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Boundary conditions The Navier–Stokes equations in general require two boundary
conditions to be applied either at a boundary either with another fluid (liquid or gas)
or with a solid. The first of these conditions is the no-slip boundary condition, which
states that the tangential component of the fluid’s velocity must be the same as that of
the boundary. Mathematically, this may be written

[u ∧ n]+
−
= 0 (1.4)

where n is the normal to the boundary and the notation [f ]+− means “the change in

f(x) across the boundary”, i.e. [f ]+− = limǫ→0 [f(0 + ǫ)− f(0− ǫ)] for a problem with a
boundary at x = 0.

The second boundary condition is the kinematic boundary condition, which states
that the normal velocity to any boundary must be continuous across that boundary, i.e.

[u · n]+
−
= 0. (1.5)

This is a direct consequence of the conservation of mass applied at a boundary.
When the boundary in question is a free surface, z = f(x, y, t), it is common to use

a corollary of the kinematic boundary condition that

w = ft + u · ∇f, on z = f(x, y, t) (1.6)

or, equivalently, that

D(z − f)

Dt
= 0, (1.7)

i.e. that particles that start on the surface remain on the surface.

Some simplifications The dimensionless version of the Navier–Stokes equations,
(1.2), suggests that (1.2) may simplify considerably in the limits of Re ≪ 1 and Re ≫ 1.
We consider briefly these limits now.

1.1.1 Re ≪ 1: Stokes flows

In the limit of Re ≪ 1 we take p∗ = µU/L so that (1.2) becomes

∇2u+ F = ∇p. (1.8)

Equation (1.8) is referred to as Stokes’ equation and flows that satisfy this equation
are known as Stokes flows.

1.1.2 Re ≫ 1: Euler flows

In the limit of Re ≫ 1 we take p∗ = ρU2 so that (1.2) becomes

Du

Dt
= F−∇p. (1.9)



C5.7 Topics in Fluid Mechanics 1–3

Equation (1.9) is referred to as Euler’s equation and is covered in detail in the Part
A Fluid Dynamics & Waves course. Note that in Euler flows, the no-slip condition
cannot be enforced (since the problem is only second order and hence can only have
one boundary condition). In reality, the neglect of the ∇2u/Re term leads to boundary
layers where the viscosity of the liquid is important; the no-slip boundary condition is
satisfied in the inner problem associated with the boundary layer.

1.1.3 The Boussinesq approximation

For some portions of this course we shall be interested in flows that are generated by
changes in buoyancy, for example in the convection generated by heating a fluid from
below. To simplify the analysis of such situations we shall make the following commonly
used assumptions:

1. Changes in density caused by the onset of motion are primarily the result of
temperature and composition (rather than pressure) changes.

2. In the equations expressing the conservation of momentum and mass, density
changes may be neglected except where they are coupled to the gravitational ac-
celeration in the buoyancy force.

Collectively, these assumptions are referred to as the Boussinesq approximation. A
rational justification of these assumptions can be given in certain situations [see, for
example, E. A. Spiegel & G. Veronis, Astrophys. J. 131, 442 (1960)]. However, for the
purposes of this course we shall simply make this assumption. In particular, we note
that in this situation the conservation of mass simplifies to

∇·u = 0, (1.10)

i.e. we assume that the flow is incompressible.

1.1.4 Two-dimensional flows

For flows in two dimensions, it is possible to ensure that the incompressibility condition
(1.10) is automatically satisfied by expressing the velocity field u in terms of a stream-

function ψ. The details of doing this depend on the exact geometry in hand. The most
useful cases are the following:

• Planar flows. In this case u = (u, v, 0) and we let

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

• Axisymmetric flows: Cylindrical Polars. In this case u = (ur, uθ, 0) and we let

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
.
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• Axisymmetric flows: Spherical Polars. In this case u = (ur, uθ, 0) and we let

ur =
1

r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ

∂ψ

∂r
.

The relevant form of the streamfunction can be substituted into the relevant limit
of (1.2), which may then be solved for the function ψ safe in the knowledge that the
velocity field that results from the solution will be divergence free by construction.

1.2 Other Conservation Laws

The Navier–Stokes equations consist of a mathematical description of the conservation of
mass and conservation of momentum, as we have already seen. In some of the situations
considered in this course we will want to describe the conservation of other quantities,
most notably the conservation of a solute (for example salt in sea water) or energy (for
example convection due to differences in temperature). The conservation of a solute
typically takes the form of the advection–diffusion equation for the concentration C(x, t)

DC

Dt
= κC∇2C (1.11)

for a solute diffusion coefficient κC . The conservation of energy may be complicated
by the presence of a heat source q as well as the working of pressure forces in volume
changes and describes the evolution of the temperature field T (x, t):

ρcv
DT

Dt
= −p∇ · u+∇ · (k∇T ) + ρq. (1.12)

where cv is the specific heat at constant volume. However, this too will frequently
reduce to an advection–diffusion equation (for Boussinesq flows with no internal heat
generation) and so we have

DT

Dt
= κT∇2T, (1.13)

where κT = k/ρcv is the thermal diffusivity.
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2 Surface Tension and Viscous
Flows

2.1 Surface tension

2.1.1 What is surface tension?

Liquids consist of molecules tightly packed together and interacting with one another
through an attractive force (this is why gases condense to form liquids when the molecules
are slowed down by cooling). A molecule in the bulk of a liquid is therefore ‘happy’ in the
sense that it feels these attractive interactions from all directions. A molecule at the liq-
uid surface, however, is ‘unhappy’ because it has attractive interactions with only half as
many neighbours as the bulk molecule. This unhappiness corresponds to an increase in
the potential energy of the system and is why liquids like to minimize their surface area
when free to do so. If the energy difference between the bulk and interfacial molecules
is U then having molecules of cross-sectional area a2 at the interface (rather than in the
bulk) will cost U/a2 per unit of the liquid’s surface area. For many liquids the attractive
interaction is caused by relatively weak van der Waals interaction and so we have that
U ≈ kBT — the thermal energy. At room temperature, kBT ≈ 4×10−21 J, and so for a
molecule with typical ‘radius’ 0.1 nm we find that this surface energy is γ ≈ 0.1 Nm−1.
For an air–water interface detailed measurements show that γ = 72.8 mJm−2 at room
temperature. Other liquid–gas interfaces typically differ in the value of γ a little: the
largest normal value is for an air–mercury interface, which has γ = 485 mJm−2.

Figure 2.1: Thought experiment demonstrating that a surface energy γ can also be
thought of as a surface ‘tension’. A rod is free to move on a wire frame that makes a
soap film. The decrease in surface energy 2γwδx is equivalent to the work done by a
force F = 2γw acting on the rod over a distance δx.



2–2 OCIAM Mathematical Institute University of Oxford

−

+ C

ν

S

t

n

Figure 2.2: A small element of surface.

Note that the units of the surface energy γ are [γ] = Jm−2 = Nm−1, which is also
the units used to measure tensions. To see that the surface energy γ can also ‘pull’,
just like the tension in a string, consider the following thought experiment: a soap film
is formed within a rectangular frame with three rigid sides and one rigid rod that is
free to move (see figure 2.1). In this situation, the energy of the system is reduced by
moving the mobile rod. In moving a distance δx the surface energy of the system is
decreased by an amount 2γ · δx ·w where w is the width of the rectangle and the factor
2 arises because there are actually 2 liquid–gas interfaces in this scenario. Since energy
is conserved in this system, the work done on the rod is δW = 2γwδx = Fδx: i.e. a
force F = 2γw acts on the rod. There is thus a surface tension of magnitude γ that acts
within the plane of the surface. How do we quantify its effect on the fluid below?

2.1.2 Stress conditions at a fluid-fluid interface

Consider an (arbitrarily small) section of an interfacial surface S bound by a closed
contour C as shown in Figure 2.2. The force on S due to surface tension is exerted
around the boundary C in a direction perpendicular to C but tangent to the surface S
(call this direction ν) and is of magnitude γ per unit length.

Now consider a small volume element created by moving a distance (−ǫ, ǫ) normal to S.
A force balance on this element gives

∫

V
ρ
Du

Dt
dV =

∫

V
f dV +

∫

S

(
t+ + t−

)
dS +

∫

C
γν ds,

where

• f is the body force

• u the fluid velocity

• ρ the fluid density

• t+ the force per unit area that the upper (+) fluid exerts on the top surface
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• t− the force per unit area that the lower (−) fluid exerts on the bottom surface.

Letting ǫ → 0 the volume integrals scale like ǫ and tend to zero. We conclude that the
surface forces must be in balance, and hence that:

0 =

∫

S

(
t+ + t−

)
dS +

∫

C
γν ds.

Now, if the stress tensor in the fluid is

T = −pI+ µ
[
∇u+ (∇u)T

]
,

where p is the pressure and µ is the viscosity, then the surface forces per unit area are

t+ = n ·T+, t− = −n ·T−,

where n is the unit upward normal to S (from − to +).

Defining γ and n off surface by an extension which is invariant in the direction
perpendicular to the tangent plane, we find that Stokes Theorem (see Problem Sheet 1)
gives

∫

C
γν ds =

∫

S
[∇γ − γ(∇ · n)n] dS.

With

∇s = ∇− n
∂

∂n

denoting the surface gradient, and noting with the above definition of γ and n off surface,
we have ∇γ = ∇sγ and ∇ · n = ∇s · n and hence

∫

C
γν ds =

∫

S
(∇sγ − γ∇ · nn) dS.

Thus ∫

S

(
n ·T+ − n ·T−

)
dS =

∫

S
[γ(∇ · n)n−∇sγ] dS.

Since the surface element S was arbitrary, the integrand must vanish identically, giving
the interface force balance equation

n ·T+ − n ·T− = γ(∇ · n)n−∇sγ. (2.1)

The left-hand side of this equation is the difference between the force per unit area
exerted on the interface by the upper and lower fluids. The first term on the right-hand
side is a normal force per unit area generated by the curvature of the surface (see next
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Figure 2.3: Setup diagram for the determination of the radius of curvature, a.

section). The second term on the right-hand side is a tangential force per unit area
associated with gradients in surface tension.

Equation (2.1) is a vector equation, which is often written in terms of its normal and
tangential components. Taking the inner product with n gives the normal force balance

n ·T+ · n− n ·T− · n = γ(∇ · n). (2.2)

Taking the inner product with any tangent vector t gives the tangential force balance

n ·T+ · t− n ·T− · t = −∇sγ · t. (2.3)

2.1.3 Curvature

Curvature in two dimensions The magnitude of the curvature of a 2D surface at a
point P is the reciprocal of the radius of the best fit circle to the surface at P . We seek
an expression for the curvature in terms of the unit normal at P . A detailed derivation
of the 2D result is given in the appendix (and is not examinable).

Defining the 2D surface by z = h(x), we first find the unit normal and unit tangent
vectors:

n =
(−h′, 1)

(1 + h′2)1/2
, t =

(1, h′)

(1 + h′2)1/2
.

Then the magnitude of the curvature at P is given by

1

a
=

h′′0
(1 + h

′2
0 )

3/2
= −∇ · n0.
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More generally, the magnitude of the curvature at the point x is given by

∣
∣
∣
∣

h′′(x)

(1 + h′(x)2)3/2

∣
∣
∣
∣
= |∇ · n|

and the curvature, κ, is defined by

κ = −∇ · n.

Thus the curvature is positive if the centre of curvature lies above the surface and
negative if it is below (with the contrast between above and below determined by the
direction of the unit normal).

Curvature in three dimensions In three dimensions let z = h(x, y) denote a surface
and consider the point

(xp, yp, h(xp, yp)).

With xP , yP fixed and λ constant the line

y − yp = λ(x− xp)

defines a two dimensional surface via

z = h(x, yp + λ(x− xp)).

Its curvature at x = xp can be found as above and varies with λ. The sum of the
maximum of these curvatures and the minimum of these curvatures defines the total
curvature, denoted κ, at the point P . With the normal

n =
1

∣
∣
∣
∣
∇(z − h(x, y))

∣
∣
∣
∣

∇(z − h(x, y)),

defined off-surface by an extension which is independent of the direction perpendicular
to the tangent plane, so that

−∇ · n =
hxx(1 + h2y) + hyy(1 + h2x)− 2hxhyhxy

(1 + h2x + h2y)
3/2

,

the total curvature is equal to

κ = −∇ · n.

We do not prove this statement here (see e.g. Weatherburn, C. E., 1961, Differential
Geometry of Three Dimensions, Vol. 1, C.U.P.).
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2.1.4 Capillary statics

We consider here static fluid configurations, for which u = 0. The stress tensor in the
fluid is then T = −p I, so that

n ·T · n = −p, n ·T · t = 0.

The normal stress boundary condition is then

p+ − p− = γκ.

There is a pressure jump across the interface which is balanced by the force due to
curvature. The tangential stress boundary condition is

0 = −∇sγ.

Thus we see that there cannot be a static system in the presence of surface tension
gradients. Pressure jumps can sustain normal stress jumps across a fluid interface, but
they do not contribute to the tangential stress. Thus tangential surface stresses can only
be balanced by the viscous stresses associated with fluid motion.

Stationary bubble

Consider a spherical bubble of radius R submerged in a stationary fluid. The curvature
of the spherical interface is

−κ = ∇ · n = ∇ · r = 1

r2
∂

∂r

(
r2
)
=

2

R
.

Thus the normal force balance gives

p− − p+ =
2γ

R
.

The pressure within the bubble, p−, is higher than that outside by an amount propor-
tional to the surface tension, and inversely proportional to bubble radius. Small bubbles
have a higher internal pressure, and are consequently louder than large bubbles when
they burst at a free surface: champagne is louder than beer.

Note that soap bubbles in air have two free surfaces (the inner and outer surfaces of the
soap film). Consequently the pressure difference between the inside and outside of the
bubble is twice that across a single interface.

Static meniscus

Consider a situation in which a heavy fluid such as water lies stationary below a much
lighter fluid such as air. The pressure in the air is constant, so that p+ = p0 say, but
the pressure in the water varies due to the presence of gravity, so that

p− = p0 − ρgz,
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x
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g
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θ

Figure 2.4: A meniscus. The shared interface among the three phases of the solid, liquid
and gas is known as a contact line; here the contact line is perpendicular to the page and
is simply a point in the figure (the vertex of the arc subtended by θ). More generally a
contact line refers to the shared interface of a solid and two different fluids.

where p0 is constant, z is the vertical coordinate, and g = −gz is the gravitational
acceleration. The normal force balance on the interface now gives

ρgz = γκ. (2.4)

Equation (2.4) is known as the Laplace–Young equation.

Consider the planar meniscus that arises where the air-water interface meets the
wall of a container, as shown in Figure 2.4. If we define the free surface to be given by
z = h(x) then its curvature is

κ =
hxx

(1 + h2x)
3/2

. (2.5)

The Laplace–Young equation for the interface shape may therefore be written

ρgh = γ
hxx

(1 + h2x)
3/2

. (2.6)

in this instance. Since this is a second-order differential equation we require two bound-
ary conditions for its solution. Requiring that h → 0 as x → ∞ provides one of these
conditions. However, we need another condition at x = 0. Based on experimental obser-
vations, we postulate that the angle between the air–water interface and the immersed
boundary is a constant that depends on the nature of the three phases (liquid, solid and
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gas) that meet at x = 0. This ‘contact angle’ θ depends on the physics of the interaction
between the wall and the air and water (in particular on how easy it is for the water to
“wet” the wall). We will return to contact angles later, but for now we treat θ as an
experimentally determined constant.

If θ is close to π/2, the slope of the meniscus remains small (hx ≪ 1) and we can
linearise (2.6) to give

ρgh = γhxx,

with the boundary conditions

h(∞) = 0, hx(0) = − cot θ.

Thus

h = ℓc cot θ e
−x/ℓc , (2.7)

where ℓc =
√

γ/ρg is the capillary length. Thus the meniscus is a decaying exponential,
with a decay length of ℓc. For an air–water interface, ℓc ≈ 3 mm explaining why the
meniscus is only observed very close to the edge in a glass of water.

Floating bodies

Floating bodies are supported by a combination of buoyancy and surface tension forces.
Consider a two-dimensional non-wetting body. Then the pressure in the fluid is

p = p0 − ρgz

so that the pressure at the interface z = h(x) is

p = p0 − ρgh.

Let n denote the unit inward normal to the body with the part of the body in contact
with the water labelled by S1. The part of the body in contact with the air is S2, and
the contact line, C, is the wetting curve separating the air from the liquid on the body
(drawn out of the page in figure 2.5). Then the force on the body is

∫

S1

pn dS +

∫

S2

p0n dS +

∫

C
γν ds =

∫

S1∪S2

p0n dS −
∫

S1

ρghn dS +

∫

S1

γκn dS

noting that ∇sγ = 0 as u = 0. Using the facts that p0 is constant and that
∫

S
n dS = 0

(which may be proved by applying the divergence theorem to the above integral after
dotting with an arbitrary constant vector), the force on the body simplifies to

−
∫

S1

ρghn dS +

∫

S1

γκn dS.
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Figure 2.5: The volumes displaced by a floating two-dimensional object: Vb is the volume
displaced by the object itself, Vm the volume displaced by the associated meniscus. Note
that the contact line C is drawn coming out of the page.

Thus the vertical force balance is

Mg = z ·
∫

S1

(−ρgh+ γκ)n dS = Fb + Fc,

say. The buoyancy force

Fb = −z ·
∫

S1

ρghn dS = ρgVb

is simply the weight of the fluid above the object and inside the line of tangency (see
figure 2.5).

The surface tension forces

Fc = z ·
∫

S1

γκn dS,

may be re-written using the Laplace–Young equation on the free surface. First, by
Stokes theorem we have

∫

S1

γκn dS +

∫

S3

γκn dS =

∫

C∞

γν ds = γ

∫

C∞

ν ds.

Here S3 is the free surface (with outward pointing normal n) and C∞ is an arbitrarily
large circular contour bounding the meniscus; we have used the fact γ is constant as
the fluid is static. On C∞ the fluid is essentially flat; the deviations of the unit normal
from ẑ are exponentially small and thus convergence to flatness is sufficiently fast. Thus
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ν = er to within exponentially small errors in the distance from the body and hence
the above integral tends to zero as the distance from the body tends to infinity, giving

∫

S1

γκn dS = −
∫

S3

γκn dS.

Hence

z ·
∫

C
γν ds = z ·

∫

S1

γκn dS = −z ·
∫

S3

γκn dS,

But on the free surface, S3, buoyancy and surface tension exactly balance and hence the
Laplace-Young equation holds, giving

ρgh = γκ.

Thus

Fc = −z ·
∫

S3

ρghn dS = ρgVm,

where Vm is the volume of fluid displaced above the meniscus outside the line of tangency.
Thus the total upward force on the body may be expressed as

ρg(Vb + Vm).

This is the generalization of Archimedes’ principle to incorporate the vertical force from
surface tension. More details may be found in a paper by Keller, Phys. Fluids 10, 3009
(1998).

To consider the relative sizes of the contributions from the conventional Archimedes
force and that due to surface tension, we note that the meniscus will have a length
comparable to the capillary length ℓc, so that

Vb ∼ depth×R2, Vm ∼ depth×Rℓc,

where R is a typical lengthscale of the body. Thus the relative magnitude of buoyancy
and capillary forces is

Fb
Fc

≈ R

ℓc
;

very small floating objects (R ≪ ℓc) are principally supported by surface tension forces.
This explains why small, dense objects such as drawing pins are able to float at the
surface of water despite being many times denser than the water (see figure 2.6a) as well
as how small creatures are able to walk on the surface of liquids (figure 2.6b).

2.1.5 Marangoni flows

Marangoni flows are those driven by surface tension gradients. In general the surface
tension γ depends on both the temperature, T , and the concentration, C, of interfacial
contaminants. As the temperature of a liquid increases, the surface tension coefficient
generally decreases. For an air–water interface, γ−1 dγ/ dT ≈ −1/50K. Surface active
agents (‘surfactants’) contain a hydrophobic tail (non-polar) and a hydrophilic head
(polar) and so like to reside at the air–liquid interface. The presence of these surfactant
molecules decreases the surface tension coefficient.
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Figure 2.6: The large deformations produced by interfacial objects. (a) The vertical
component of surface tension is sufficient to balance the weight of objects much denser
than the underlying liquid, such as an upturned drawing pin floating on water. (b) Large
interfacial deformations allow creatures such as the fishing spider (Dolomedes triton) to
walk on water (image courtesy of Robert B. Suter of Vassar College).

Tears of wine

The tears of wine phenomenon was the first Marangoni flow to be considered (by Lord
Kelvin in 1885), and predates Marangoni’s first published work on the subject by a
decade.

Tears of wine can be easily observed in all but the weakest wines after swishing
the glass to establish a thin layer of fluid on the walls. Evaporation of alcohol occurs
everywhere along the free surface. The alcohol concentration in the thin layer is thus
reduced by comparison to the bulk due to the enhanced surface to volume ratio. Surface
tension decreases with alcohol concentration, so that the surface tension in the film is
higher than that in the bulk. The resulting surface tension gradient acts to drive fluid up
the film. The wine climbs until it reaches the top of the film, where it collects in a band
of fluid that thickens until eventually becoming unstable due to gravity and releasing
the tears of wine. The tears or ‘legs’ roll down to replenish the bulk reservoir, but with
fluid that is depleted with alcohol.

Surfactants

Surfactants alter both the normal (through the reduction of γ) and tangential (through
the generation of marangoni forces) stress balances. The presence of surfactants will
act to supress any fluid motion characterised by a nonzero surface divergence. For
example, consider a fluid motion characterised by a radially divergent surface motion.
The expansion of the surface means that Γ is reduced near the point of divergence,
increasing the surface tension there. The resulting Marangoni stresses act to reduce
the surface motion. Similarly if the flow is characterised by a radial convergence, the
resulting accumulation of surfactant in the region of convergence will decrease the surface
tension again generating marangoni forces which oppose the flow. This is one reason
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why soap films survive as long as they do: the divergent motions that would cause a pure
liquid film to rupture are suppressed by the surfactant layer on the soap film surface.

The ability of surfactant to suppress flows with non-zero surface divergence is behind
the phrase “pouring oil on troubled waters,” and is evident throughout nature. It was
remarked upon by Pliny the Elder, who rationalised that the absence of capillary waves
in the wake of ships is due to them stirring up surfactant. It is also responsible for the
“footprints of whales”. In the wake of whales one sees patches on the sea surface (of
characteristic width 5-10m) that are perfectly flat. These are generally acknowledged to
result from whales sweeping biomaterial to the surface with their tails; this biomaterial
acts as a surfactant to suppress capillary waves.

Effect of surfactants on bubble motion

Theoretical predictions for the rise speed of small bubbles do not adequately describe
experimental observations. Air bubbles rise at low Reynolds numbers at rates more
appropriate for rigid spheres with equivalent buoyancy in all but the most carefully
cleaned fluids. The discrepancy can be explained by considering the effect of surfactants.

The flow around a bubble diverges and converges at the leading and trailing surfaces
respectively. In the presence of surfactant contamination surfactants will accumulate at
the trailing edge, giving rise to a local decrease in surface tension. The resulting surface
tension gradient acts to resist surface motion, so that the bubble surface is more rigid.
The air bubble thus moves as if its surface were fixed, so that its rise rate is closer to
that of a rigid sphere: the no-slip boundary condition is more appropriate than free-slip.
The effect is more pronounced for small bubbles, since the Marangoni force scales as
∆γ/R, where R is the bubble radius.

Thermo-capillary bubble motion

Analogously to the ‘rigidification’ of the bubble’s surface described above, a bubble
placed in a temperature gradient can move because of the Marangoni stresses induced by
the temperature gradient. This was used by Young et al. (J. Fluid Mech. 6, 350 (1959))
to counteract the buoyancy-induced rise of a bubble. We now present a calculation that
quantifies this ‘thermo-capillary’ motion. For simplicity, we shall assume that the bubble
remains spherical as it moves, though in fact it is possible to show a posteriori that tho
is the case provided that the bubble motion occurs at low Reynolds number.

We imagine that the temperature field is imposed everywhere (including within the
bubble) to be

T = T∞ + T ′z (2.8)

in the frame moving with the bubble. (Note that temperature field satisfies ∇2T = 0
and so relies on the convection of heat being negligible compared with its diffusion. We
are also implicitly assuming that the bubble and fluid have the same thermal conduc-
tivity.) We shall also assume that the relationship between surface tension coefficient
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and temperature is linear so that we may write the surface tension coefficient around
the droplet as

γ = γ0 + γ′z = γ0 + γ′a cos θ. (2.9)

We need to solve for the velocity field u = (ur, uθ). Standard methods for Stokes flow
(see §3.3 of Ockendon & Ockendon, Viscous Flow, for example) show that the velocity
components are

ur =
1

r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ

∂ψ

∂r
(2.10)

where the streamfunction ψ has the form

ψ = (Ar4 +Br2 + Cr +D/r) sin2 θ (2.11)

in the spherical geometry of interest here. The coefficients A,B,C and D are to be
determined by relevant boundary conditions. At r = a we use the fact that the normal
component of the fluid velocity must vanish on the sphere surface, i.e.

ur(r = a) = 0 (2.12)

and that the tangential shear stress is matched by that due to the temperature gradient

τrθ = µa
∂

∂r

(uθ
r

)
∣
∣
∣
∣
r=a

= −1

a

∂γ

∂θ
= γ′ sin θ. (2.13)

We also require that as r → ∞ the velocity field returns to a uniform flow in the
z-direction. This corresponds to

ψ ∼ −U
2
r2 sin2 θ, r → ∞. (2.14)

We therefore have immediately that A = 0 and B = −U/2. From the requirement that
ur(r = a) = 0 we find that

C +D/a2 = Ua/2, (2.15)

while the tangential stress condition gives

−2C +
4D

a2
= −Ua− γ′a2

µ
. (2.16)

Solving these equations, we find that

C =
Ua

2
+

1

6

γ′a2

µ
(2.17)

and

D = −1

6

γ′a4

µ
. (2.18)
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The quantity that is of most interest is, however, the drag force on the bubble. This
viscous drag is proportional to the coefficient C of the Stokeslet term; this is because
it is this term alone that contributes to the momentum flux

∫

S σijnj dS through any
sphere in the liquid and σij ∝ C/r2. Now recall from Part B that for a rigid sphere
C = 3Ua/4 resulting in a drag force 6πµUa. We therefore have here that

Fd =
6πµUa

3Ua/4
×
[
Ua

2
+

1

6

γ′a2

µ

]

= 4πµUa+
4π

3
γ′a2. (2.19)

To hold the bubble stationary we need to have U = 0 and Fd = 4πρa3g/3 and so require
a surface tension gradient

γ′ = ρag (2.20)

where ρ is the density of the liquid and g the acceleration due to gravity.
Finally we note that when a bubble is moving at its steady velocity and at low

Reynolds number, the normal stress difference across the bubble surface is constant and
equal to the pressure difference due to surface tension. Thus the difference in stresses
does not act to deform the bubble away from its spherical shape and our assumption of a
spherical bubble is justified. More details of this can be found in the book by Batchelor,
page 238.



C5.7 Topics in Fluid Mechanics 2–15

2.2 Thin Film Flows and the Lubrication Approximation

2.2.1 The lubrication approximation

Let us suppose we have a thin film of fluid with either a hard wall or a vacuum outside
it. The typical thickness of the thin film will be denoted by H and the typical length
over which variations in thickness occur will be L. We shall assume that δ = H/L≪ 1.

We start with the incompressible Navier-Stokes equations

ρ (ut + u · ∇u) = −∇p+ ρg + µ∇2u,

∇ · u = 0.

where g is the gravitational acceleration.
Working in Cartesian co-ordinates (x, z) we shall assume that gradients satisfy

∂

∂z
∼ 1/H ≫ 1/L ∼ ∂

∂x

and so incompressibility ∇ · u = 0 gives us that the vertical velocity scale W is related
to the horizontal velocity scale U by

W ∼ hU/L = δU.

We may then consider the size of the terms in the horizontal component of the equation
expressing conservation of momentum. We have

ρ(u · ∇)u ∼ ρU2/L, ∇p ∼ p/L, µ∇2u ∼ µU/H2
[
1 +O(δ2)

]
.

It is therefore clear that inertia may be neglected provided that

ρUH

µ

H

L
≪ 1. (2.21)

Note that this condition involves the Reynolds number based on the film thickness
modified by an additional factor δ. Note that this Reynolds number is often referred to
as the Reduced Reynolds number. Inertia may therefore be neglected because of the thin
geometry, even in situations where the gap Reynolds number itself is not that small.
We also see that the natural scale for pressure in these systems is p ∼ µUL/H2.

Considering now the vertical component of the momentum equation, we have

ρ(u · ∇)w ∼ ρUW/L ∼ δρU2/L, ∇p ∼ p/H ∼ µUL/H3, µ∇2w ∼ µδU/H2 ∼ δ2∇p

and so at leading order
∂p

∂z
= −ρg.ẑ

so that the pressure is approximately hydrostatic. Furthermore, the flow is quasi-parallel
to the boundary — we can neglect the vertical velocity to leading order.
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We must also consider the boundary conditions to be applied to the velocity field.
At a fixed boundary we have the no slip condition

u = 0.

At a free boundary z = f(x, t) and we have the kinematic boundary condition

ft + ufx − w = 0. (2.22)

We also have the stress balance equations (2.2), (2.3). The stress tensor is

T =

(

−p+ 2µux µ(uz + wx)

µ(uz +wx) −p+ 2µwz

)

,

while the normal and tangent to the surface are

n =
(−fx, 1)

(1 + f2x)
1/2

, t =
(1, fx)

(1 + f2x)
1/2

,

and the curvature is

κ =
fxx

(1 + f2x)
3/2

.

Thus the full free-surface stress boundary conditions are

−p+ 2µ

(1 + f2x)

(
f2xux − fx(uz +wx) + wz

)
=

γfxx
(1 + f2x)

3/2
, (2.23)

2fx(ux −wz) + (f2x − 1)(uz + wx) = 0. (2.24)

However, in keeping with our assumption that δ = H/L ≪ 1 and the consequences of
this assumption that we have already explored, we find that the second term on the
LHS of (2.23) is negligible and so (2.23) simplifies to

−p ≈ γfxx. (2.25)

Similarly, (2.24) simplifies considerably to yield

∂u

∂z
= 0. (2.26)

We can derive an integrated version of conservation of mass which is applicable in
general. Let us suppose that the bottom surface is given by Z = k(x, t) and the top
surface is given by Z = h(x, t). A key point to note is that the kinematic condition
(2.22) also holds at a fixed surface (since ht = u =W = 0 at a fixed surface).
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∂

∂x

∫ h

k
u dZ =

∫ h

k

∂u

∂x
dZ + u(h, t)hx − u(k, t)kx

= −
∫ h

k

∂W

∂Z
dZ + u(h, t)hx − u(k, t)kx

= W (k, t)−W (h, t) + u(h, t)hx − u(k, t)kx

= kt − ht

Thus, if we define the thickness of the film H and average velocity ū by

H = h− k, ū =
1

H

∫ h

k
u dZ,

then

Ht + (Hū)x = 0. (2.27)

To complete the model we need to find an expression for the average velocity ū
in terms of H. The details of this depend on the problem being considered. We now
consider some examples.

2.2.2 Free surface flow down an inclined plane

Consider a thin film flowing down a plane inclined at an angle α to the horizontal. The
direction of gravity in coordinates tangential and normal to the plane is given by

ĝ = (sinα,− cosα).

The shape of the free surface z = h(x, t) is unknown and must be determined. The fluid
therefore lies between a fixed bottom surface z = 0 and a free top surface z = h. The
pressure is determined by the vertical component of the momentum equation

∂p

∂z
= −ρg cosα

subject to the boundary condition (2.25). We find that

p = −γhxx + ρg(h− z) cosα.

Substituting this expression into the horizontal momentum equation, we have

µ
∂2u

∂z2
=
∂p

∂x
− ρg sinα = −γhxxx + ρg cosαhx − ρg sinα. (2.28)

Now for non-zero α and sufficiently shallow flows hx ≪ tanα and so we may simplify
this to find

µ
∂2u

∂z2
= −γhxxx − ρg sinα. (2.29)
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We non-dimensionalize (2.29) using a velocity scale U and a length scale R to find

∂2u

∂z2
= − 1

Ca
hxxx −

Bo

Ca
sinα (2.30)

where

Ca ≡ µU

γ
(2.31)

measures the strength of viscous forces compared to capillary forces and is referred to
as the Capillary number while

Bo ≡ ρgR2

γ
(2.32)

measures the relative strength of gravity to capillary forces and is referred to as the
Bond number.

Integrating (2.29) subject to u(0) = 0 and uz(h) = 0 we have

u = −z(z − 2h)

2Ca
(hxxx +Bo sinα)

so that the thickness-averaged velocity is

ū =
h2

3Ca
(hxxx + Bo sinα) .

Substituting into (2.27) gives

ht +

[
h3

3Ca
(hxxx + Bo sinα)

]

x

= 0. (2.33)

2.2.3 Free surface flow on a horizontal plane

Let us consider now that α = 0 and that the fluid lies between a fixed bottom surface
Z = 0 and a free top surface Z = h. Returning to (2.28) we see that our neglect of the
hx term in comparison to tanα is no longer justified and so we now write

µ
∂2u

∂z2
= −γhxxx + ρghx,

which may be solved to give, in dimensionless form,

u = −z(z − 2h)

2Ca
(hxxx − Bo hx)

and hence

ū =
h2

3Ca
(hxxx − Bo hx) .

Finally, (2.27) gives

ht +

[
h3

3Ca
(hxxx − Bo hx)

]

x

= 0. (2.34)
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2.2.4 Static solutions and the contact angle

Static meniscus against a vertical wall

See Fig. 2.4. Consider an infinite thin film of fluid which meets a vertical wall at x = 0,
with contact angle θ; the thin film approximation requires the contact angle with the
wall to be almost π/2. Thus

hx(0) = − cot θ ≈ θ − π

2
.

Suppose the height of the fluid at infinity is h0; noting that hx and hxxx tend to zero at
infinity we have

(
h3

3Ca
(hxxx − Bo hx)

)

x

= 0

and hence
h3

3Ca
(hxxx − Bo hx) = const. = 0,

using the condition at ∞ to set the integration constant to zero.
It is easy to see that the general solution is h = a + bex/ℓc + ce−x/ℓc , where ℓc =

√

1/Bo = (γ/ρg)1/2/R is the dimensionless capillary length. The condition at infinity
implies a = h0, b = 0, while the condition at the origin gives c = ℓcθ. Hence

h− h0 = ℓc

(π

2
− θ
)

e−x/ℓc ,

which is of course the same as (2.7) when θ is close to π/2.

Finite fluid blob lying on a horizontal plate

Figure 2.7: The definition of the contact angle θ

Consider a static blob of fluid, of total cross sectional area A. At a point where the
film thickness goes to zero the contact angle is given. Thus if h(x0) = 0 then

hx(x0) = ± tan θ ≈ ±θ.
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This assumes that the contact angle is small (otherwise the lubrication approximation
is violated near the contact line).

We suppose that the blob is symmetric about x = 0 and occupies the region
(−x0, x0), so that

hx(0) = 0, (2.35)

h(x0) = 0, (2.36)

hx(x0) = −θ, (2.37)
∫ x0

0
hdx =

A

2
. (2.38)

Then, as before,
h3

3Ca
(hxxx − Bo hx) = const. = 0,

Since this is the fluid flux the constant must be zero; alternatively, by symmetry odd
derivatives of h must be zero at x = 0 enforcing the constant to be zero. Thus

hxxx − Bo hx = 0,

so that
h = a+ b sinh(x/ℓc) + c cosh(x/ℓc),

where ℓc =
√

1/Bo is the dimensionless capillary length, as before. Equation (2.35)
gives b = 0.

Then (2.36) and (2.37) give

a+ c cosh(x0/ℓc) = 0,
c sinh(x0/ℓc)

ℓc
= −θ,

so that

c = − θℓc
sinh(x0/ℓc)

, a = θℓc coth(x0/ℓc).

Finally x0 is related to the cross sectional area A by

A

2
=

∫ x0

0
[a+ c cosh(x/ℓc)] dx = ax0 + cℓc sinh(x0/ℓc)

= θℓ2c

[
x0
ℓc

coth(x0/ℓc)− 1

]

.

As (y coth(y) − 1) is monotonic increasing and attains all positive values for y ≥ 0, we
have that for any mass of fluid M there is a unique value x0, which gives the width of
the blob.
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Thin film equation

Static meniscus

Figure 2.8: Dip coating

2.3 The Landau–Levich equation

Consider now drawing a sheet at a constant speed out of a bath of fluid. This is a simple
model of typical industrial coating processes. The main quantity of interest is the final
thickness of the fluid film as a function of the withdrawal speed U .

We could redo our thin film analysis replacing the zero velocity no slip boundary
condition with the condition u = U on z = 0. However, we can avoid this by observing
that in coordinates moving with the wall our previous equation holds. We proceed as
follows:

1. We take equation (2.33) and impose α = π/2 and x→ −x to give

ht +

[
h3

3Ca
(hxxx − Bo)

]

x

= 0.

2. We use the plate velocity U as the non-dimensionalization velocity scale so that
the plate velocity is unity in the non-dimensional equations. We jump to the
travelling coordinate system

x̄ = x− t, t̄ = t, h̄(x̄, t̄) = h(x, t).

In this frame we have zero velocity conditions on the plate z = 0 while the free
surface conditions are unaffected, as we are still working in an inertial frame (and
thus the force balances dictating the surface boundary conditions are the same).
Hence, we can apply the above equation in this travelling coordinate system to
find that

h̄t̄ +

[
h̄3

3Ca

(
h̄x̄x̄x̄ − Bo

)
]

x̄

= 0.



2–22 OCIAM Mathematical Institute University of Oxford

Transforming back to the laboratory frame we have that

ht + hx +

[
h3

3Ca
(hxxx − Bo)

]

x

= 0

3. Following convention that horizontal directions are represented by x and vertical
directions by z, we change the coordinate system (x, z) → (z, x) and thus we have

ht + hz +

[
h3

3Ca
(hzzz − Bo)

]

z

= 0

as the final equation.

2.3.1 The steady state problem

Now suppose that the drag out settles down to a steady state. Then

hz +

[
h3

3Ca
(hzzz − Bo)

]

z

= 0. (2.39)

An obvious scaling for the thickness of the fluid film is obtained by balancing gravity
and viscosity, corresponding to choosing the scales so that Bo/Ca = O(1). This gives

ρgH2

µU
∼ 1,

so that

H ∼
(
µU

ρg

)1/2

= d,

say.

However, we will see that this is not the correct scaling in the case that the capillary
number Ca ≪ 1. We will develop a solution through the method of matched asymptotic
expansions for the case Ca ≪ 1. This solution will contain two regions: a thin film
on the wall in which viscosity balances surface tension, and a static meniscus region in
which surface tension balances gravity (see Figure 2.8).

2.3.2 The steady state drag out problem for Ca ≪ 1.

Static meniscus, Ca ≪ 1.

When Ca ≪ 1, the fluid will adopt the shape of a static meniscus in which gravity and
surface tension balance on the outer scale away from the wall. In particular the free
surface condition shows that the velocity field does not contribute to the leading order
dynamics and thus we have a hydrostatic problem at leading order.

We therefore use the Laplace–Young equation to describe the shape of the outer
meniscus. (Note that we cannot use the general thin film equation here because our
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Thin film equation

Static meniscus

Figure 2.9: Meniscus region

assumption of small slopes is violated in this capillary static region.) On taking our
non-dimensionalization into account, the Laplace–Young equation (2.4) takes the form

κ = Bof,

where z = f(x) is the height of the film. For the free surface to match with the thin
film region the meniscus, as given by this equation, must be tangential at the point of
contact.

Choosing the non-dimensionalization length scale R to enforce Bo = 1 (which is
equivalent to choosing R to be the capillary length) gives κ = f. Instead of writing the
height of the film as z = f(x), let us write it as x = H(z). Then the Laplace-Young
equation is

κ = z,

or,

Hzz

(1 +H2
z )

3/2
= z (2.40)

noting that the interpretation of curvature as the inverse radius of the best fit circle
applies equally to a surface expressed in the form z = f(x) or in the form x = H(z).
See Fig. 2.9. The boundary conditions for equation (2.40) are

H(z0) = 0, (2.41)

H ′(z0) = 0, (2.42)

H → ∞, Hz → −∞ as z → 0, (2.43)
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where z0 is the height of the (apparent) contact point above the free surface.

Integrating once gives
Hz

(1 +H2
z )

1/2
=
z2

2
+A =

z2 − z20
2

,

after using (2.42). Rearranging gives

Hz =
z2 − z20

[
4− (z20 − z2)2

]1/2
.

As z → 0 we find

Hz ∼ − z20
(4− z40)

1/2
.

Applying (2.43) we see that we must choose z0 =
√
2. This is now enough for us to

determine the local behaviour near z = z0, which is what we need for matching with (as
yet undetermined) behaviour in the thin film region. Equation (2.40) gives

Hzz(z0) = z0 =
√
2.

Using the fact we now know H(z0), Hz(z0), Hzz(z0), we have

H ∼ (z − z0)
2

√
2

, (2.44)

as z → z0.

Scaling of the wall region, Ca ≪ 1.

As z → z0 the fluid forms a thin film on the wall. Let us determine the scaling of the
thickness of this film, and the vertical extent of the “turn around” region where the thin
film equation holds.

Rewriting (2.39) after recalling that Bo = 1 by our choice of non-dimensionalisation
lengthscale, we have

hz +

(
h3

3Ca
(hzzz − 1)

)

z

= 0. (2.45)

We are interested in the behaviour as we approach the point z0 and so we pose a
rescaling of vertical length near z0 by setting z = z0 + ǫz̄. (For the moment ǫ is not
determined but we shall see that there is a natural choice.) Then, by (2.44),

h ∼ ǫ2z̄2

and we thus we set h = ǫ2h̄. On substituting these expressions into (2.45) we find that

h̄z̄ +

[
ǫ3h̄3

3Ca

(
h̄z̄z̄z̄ − ǫ

)
]

z̄

= 0.
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We can now determine the value of ǫ for a sensible balance of terms. For Ca ≪ 1,
surface tension is important in the dynamics, so we take

ǫ = Ca1/3 ≪ 1.

This gives the thin film equation

h̄z̄ +

[
h̄3

3

(
h̄z̄z̄z̄ − ǫ

)
]

z̄

= 0, (2.46)

demonstrating that gravity is unimportant in the thin film region at leading order.

Solution in the wall region, Ca ≪ 1.

At leading order in (2.46) we have

h̄z̄ +

(
h̄3

3
h̄z̄z̄z̄

)

z̄

= 0. (2.47)

The solution of (2.47) needs to match with the meniscus region (2.44) as well as to a
constant (undetermined) film thickness far up the wall. We therefore have the boundary
conditions

h̄ → h̄0 as z̄ → ∞, (2.48)

h̄ ∼ z̄2√
2
as z̄ → −∞, (2.49)

where h̄0 is to be determined. Integrating (2.47) once gives

h̄+
h̄3

3
h̄z̄z̄z̄ = h̄0, (2.50)

by the condition at infinity. To examine the behaviour as z̄ → +∞, we linearize by
setting h̄ = h̄0 + f with f ≪ 1. We find

f +
h̄30
3
fz̄z̄z̄ = 0,

which has solution

f = a∗ exp
[

−31/3z̄/h̄0

]

+ b∗ exp
[

31/3eiπ/3z̄/h̄0

]

+ c∗ exp
[

31/3e−iπ/3z̄/h̄0

]

.

Since the real part of the exponent is positive in the exponentials multiplying b∗ and c∗,
we must have b∗ = c∗ = 0 in order to satisfy the boundary condition at infinity.

As z̄ → −∞, we linearise (2.50) by setting h̄ = z̄2/
√
2 + f with |f | ≪ z̄2 and find

fz̄z̄z̄ ∼
[

− 6

z̄4
− 6

√
2h0
z̄6

]

∼ − 6

z̄4
,



2–26 OCIAM Mathematical Institute University of Oxford

with solution

f ∼ az̄2 + bz̄ + c+
1

z̄
,

Since |f | ≪ z̄2 we must have a = 0, but b and c are arbitrary.
Finally, equation (2.47) is translation invariant. Fixing the origin removes a degree

of freedom; in fact, this is equivalent to fixing the coefficient a∗ (as explicitly illustrated
below).

Thus with the origin fixed, the boundary conditions contain two degrees of freedom,
b and c, in the above. A final degree of freedom is in the choice of h̄0 and we have a third
order differential equation. Thus we would expect (2.47) with the boundary conditions
(2.48), (2.49) to have a solution only for a specific choice of h̄0, and this indeed turns
out to be the case.

If we rescale (2.50) by writing h̄ = h̄0g, z̄ = h̄0ζ then we are seeking a solution to

g +
g3

3
g′′′ = 1, (2.51)

g ∼ 1 + e−31/3ζ as ζ → ∞, (2.52)

g ∼ h̄0√
2
ζ2 as ζ → −∞, (2.53)

where we have set the coefficient a∗ to unity by utilising the translational freedom to
change the origin.

Note that solutions of (2.51) with g → ∞ will satisfy g′′′ → 0, i.e. g ∝ ζ2. Nu-
merically shooting from infinity we find that the solution to (2.51), subject to (2.52),
satisfies

g ∼ 0.67ζ2 as ζ → −∞.

Thus h̄0 = 0.67
√
2 ≈ 0.948 and h0 ≈ 0.948Ca2/3. Redimensionalising we see that the

dimensional film thickness is

h0ℓc = 0.948

(
µU

γ

)2/3( γ

ρg

)1/2

= 0.948
µ2/3U2/3

γ1/6ρ1/2g1/2
.

We note that the dimensional height satisfies

0.948

(
µU

γ

)1/6(µU

ρg

)1/2

∼ Ca1/6d,

so that the film is much thinner in the limit Ca → 0 than the thickness d, which we
obtained initial by naively balancing viscosity and gravity in §2.3.1.
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Figure 2.10: The solution close to the wall.

2.4 Moving contact lines

2.4.1 The problem

We saw in Section 2.2.4 that a blob of fluid will sit in equilibrium on a substrate with
the final shape depending on the contact angle.

We would like to be able to model the evolution of such a configuration, that is, given
an initial finite blob of fluid, can we model it as it spreads to find this final shape.

One might think that we could do this by simply applying the boundary conditions

h = 0, hx = Θ,

at the unknown boundary of the fluid blob (as well as requiring that there is no mass loss
at the interface). However, such boundary conditions are not compatible with equation
(2.34): they do not allow the contact line to move, as we will now show.

Let us suppose that the boundary of the fluid is located at x = s(t). Then, if we
zoom in on the interface by setting x = s(t) + ξ with ξ small then locally h ∼ Θξ.
Setting h = Θξ + f , with ξ ≪ 1, |f | ≪ Θξ and keeping only the leading and next to
leading terms gives

ft − ṡfξ − ṡΘ+

[
Θ3ξ3

3Ca
fξξξ −

Θ3

3Ca
Bo(ξ3f)ξ

]

ξ

− Bo

Ca
Θ4ξ2 = O(f2).

For ξ ≪ 1, f ≪ Θξ, this simplifies to give

ft − ṡfξ +

[
Θ3ξ3

3Ca
fξξξ

]

ξ

= ṡΘ.
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Attempting to neglect the higher spatial derivatives gives the hyperbolic equation ft −
ṡfξ = ṡΘ, with f = 0 at ξ = 0, which has solution f = −Θξ; this is incompatible with
|f | ≪ Θξ, as is

ft − ṡfξ ≈ ṡΘ.

Hence, we must have that the higher spatial derivative term and ṡΘ are of the same
order: (

Θ3ξ3

3Ca
fξξξ

)

ξ

∼ ṡΘ,

and thus

fξξξ ∼
3Ca ṡ

Θ2ξ2
.

i.e.

f ∼ 3Ca ṡ

Θ2
(ξ log ξ − ξ) ∼ 3Ca ṡ

Θ2
ξ log ξ. (2.54)

However, f is supposed to be much smaller than h, and h ∼ Θξ 6≫ O(ξ log ξ). We
conclude that balancing surface tension on the left with the dominant term on the right
is inconsistent.

Supposing that it is the gravity term on the left of the above equation that balances
the dominant term on the right we have that

fξ ∼ − 3Ca ṡ

BoΘ2ξ2
,

which is even more singular.

Having both terms on the left at a higher order of magnitude with significant cancel-
lation is even more singular. Hence, we have that we cannot find a consistent solution
local to the moving contact line.

The difficulty does not lie in our attempt to use thin film theory or even inadequate
mathematics; it is a fundamental physical difficulty. The non-slip boundary condition on
the one hand, and the free surface boundary condition on the other, involve very different
physics. It is perhaps no surprise that very near a moving contact line, where the
influences of both the solid-fluid interface and the free surface interface are both present,
the fundamental physics underlying the Navier-Stokes boundary conditions needs to be
captured; fortunately, it nonetheless appears that continuum mechanics is still valid in
this region. We will only look at very special cases of the additional physics considered
in attempts to resolve this cutting edge problem; (see Ralston et. al. Annu. Rev. Mater.
Res. 2008. for a comprehensive and non-partisan review).

2.4.2 Precursor film

A simple way of introducing the additional physics required for a well defined model of a
moving contact line is to postulate that the unwetted portion of the boundary actually
has a very thin layer of fluid covering it. For instance during the oscillatory motion of
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a moving contact line, it is reasonable to hypothesis a thin film remains covering the
substrate; providing it is legitimate to treat the thin film in the context of continuum
mechanics then the fluid dynamical equations can be solved everywhere, and the problem
of a contact line has been removed.

2.4.3 Slip

Another hypothesis for the physics required to treat the moving contact line is to allow
a small amount of slip between the substrate and the fluid. Rather than imposing u = 0
on z = 0 a slip law relating horizontal velocity to the shear stress is postulated, such as

u = λuz. (2.55)

Using this law the thin film equation becomes (see exercises)

ht +

[
1

Ca

(
h3

3
+ λh2

)

(hxxx − Bohx)

]

x

= 0. (2.56)

Now, on expanding locally, there is a dominant balance

λΘ2ξ2fξξξ ∼ Ca ṡΘξ,

so that

fξξ ∼
Ca ṡ

Θλ
log ξ,

f ∼ Ca ṡ

Θλ
ξ2 log ξ ≪ Θξ,

for small ξ, and it is possible to impose a contact angle Θ. However, for small values
of λ, there is a boundary layer near the contact line, and the local value of the contact
angle is not the same as the one that the outer solution sees.

2.4.4 Tanner’s law

Often, in addition to a regularisation such as slip, a fixed contact angle is not imposed
but a relationship between the velocity of the contact line and the contact angle is
postulated.

Tanner’s law1 is one such commonly used relationship between the contact angle and
the velocity of the boundary and has often been observed to hold in specific contexts.
It states

v = K
(
θ3 −Θ3

)
,

where v is the normal velocity of the boundary, θ is the actual contact angle, and Θ is
the static contact angle. In the thin film approximation this becomes

v = K
(
−h3x −Θ3

)
.

1Sometimes also referred to as the Cox–Voinov law, see, for example, Snoeijer and Andreotti, Annu.
Rev. Fluid Mech. 45, 269 (2013).
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Tanner’s law gives a natural velocity scale

U = K.

Using this scale in the nondimensionalisation of the thin film equation, the nondimen-
sional version of Tanner’s law is simply

v = −h3x −Θ3,

and the motion will be quasistatic if

Ca =
µU

γ
=
µK

γ
≪ 1.

Again the large influence of surface tension dominates the equations giving a hydrostatic
balance at leading orders.

2.4.5 Quasistatic evolution with Ca ≪ 1, Bo ≪ 1

Even when using Tanner’s law in the full time dependent problem it is still necessary to
allow some slip to avoid a contact line singularity. However, we have seen that the law of
motion of the contact line will contain a natural velocity scale, and if this is slower than
the scale obtained by balancing viscosity with surface tension (i.e. the scale obtained
by setting Ca = 1) then the fluid may move quasi-statically: for a given contact line we
solve the steady version of (2.34), which will have a certain contact angle. The contact
line then moves with a speed determined by this contact angle. In the quasi-static case
there is no problem with stress singularities, and we do not need to include slip.

Thus, for symmetric quasi-static drop spreading using Tanner’s law and the length-
scale chosen so that Bo ≪ 1 we need to solve

[
h3

3Ca
hxxx

]

x

= 0, (2.57)

with

h(s) = 0,

ṡ = −h3x −Θ3, (2.58)

at the contact line x = s(t), together with a global mass balance equation

∫ s

−s
h dx = A.

We find that

h =
θ

2s
(s2 − x2),

where θ = −hx(s).
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Figure 2.11: Drop spreading

(Note that the choice of Bo ≪ 1 corresponds to a drop that is small compared to the
capillary length ℓc. The above result can be reconciled with the result derived in §2.2.4
by considering the s(t) ≪ ℓc limit of the results discussed there.)

Imposing the total mass constraint gives

A =
2

3
θs2 (2.59)

Tanner’s law (2.58) then gives the evolution equation for s as

ṡ = θ3 −Θ3 =
27A3

8s6
−Θ3. (2.60)

This represents an ordinary differential equation for the evolution of the contact line
position s(t) given an initial condition s(0) = s0. Clearly there is an equilibrium value
of s, s∞, for which ṡ = 0.

2.4.6 Evaporating drops and coffee stains. Ca ≪ 1, Bo ≪ 1.

Why is it that when split coffee dries the stain always has a dark rim? In this section
we will try and answer this question.

Suppose (not unreasonably) that we have a drop which is slowly evaporating, so that
the motion is quasi-static. If the evaporation is slow by comparison to the motion of the
contact line, then the drop will move through a sequence of steady state profiles, given
by the steady state version of (2.34) as in Section 2.2.4.

Now though, because of evaporation, the mass of fluid is not constant but decreasing.
Suppose that the rate of evaporation is uniform across the surface of the blob (in practice
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there will be more evaporation from the edges that from the centre). Then the mass
balance equation becomes

d

dt

∫ s

−s
h dx = −

∫ s

−s
E (1 + h2x)

1/2 dx ≈ −
∫ s

−s
E dx = −2sE,

where E is the evaporation rate and the thin film approximation hx ≪ 1 has been
invoked. Since the motion is quasi-static, E determines the timescale for the evolution
of the drop; using a velocity scaling based on E we can therefore set E = 1 in the
non-dimensional equations, which we do henceforth.

For the sake of simplicity let us assume that Bo ≪ 1, so that gravity is negligible. The
steady solution for a drop of length 2s then emerges from the equation (h3hxxx/3Ca)x =
0; integrating and noting that h = 0 at x = ±s to set the constant of integration equal
to zero, one has hxxx = 0. For simplicity, we shall also assume that the contact angle
θ = Θ, the equilibrium value and hence is constant: the dynamics is driven solely by
evaporation. Using symmetry and the boundary conditions at ±s, including setting the
contact angle hx = ±Θ at x = ∓s gives

h =
Θ

2s
(s2 − x2). (2.61)

Thus, if we allow s to vary slowly, the mass loss is

−2s =
d

dt

∫ s

−s
h dx =

d

dt

[
Θ

2s

(

s2x− x3

3

)]s

−s

=
d

dt

(
2Θs2

3

)

=
4Θsṡ

3
,

so that

ṡ = − 3

2Θ
,

and the length of the drop shrinks linearly to zero.
Let us examine the flow of liquid during this shrinking. The full evolution equation

for the flow (incorporating a sink due to evaporation) is

ht + (hū)x = ht +

(
1

3Ca
h3hxxx

)

x

= −1.

Expanding

h ∼ h0 +Ca h1 + · · · , q =
1

3
h2hxxx ∼ q0 +Ca q1 + · · · ,

we have the quasi-static solution at leading order

h0q0 =
h30
3
h0,xxx = 0,

which leads to the solution (2.61). At first order we find
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Figure 2.12: Evaporation of a film with a fixed contact angle. Since mass is lost uniformly
from the surface, but there is more mass difference between the profiles near the contact
line, fluid must flow from the edge to the centre.

h0,t + (h0q1)x = −1,

since the h1q0 term disappears. The flow field is given by ū ∼ q0/Ca + q1 ∼ q1 without
a need to determine the correction to the height h1. Using the leading order profile in
(2.61) we have

(h0q1)x = −1− h0,t = −1− Θ

2
ṡ− Θ

2

x2

s2
ṡ

Recalling that

ṡ = − 3

2Θ

we have

ū ∼ q1 =
2s

Θ(s2 − x2)

∫ x

0

(

−1− Θ

2
ṡ− Θ

2

x̄2

s2
ṡ

)

dx̄

= − 2sx

Θ(s2 − x2)

(
1

4
− x2

4s2

)

= − x

2sΘ
,

where we have used the fact that, by symmetry, ū(0) = 0. This means that the flow is
inwards from the contact line to the centre; we should expect that a dark spot in the
middle of a coffee stain. This is the opposite of what is observed in ‘experiments’. How
do we resolve this discrepancy?
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Figure 2.13: Evaporation of a film with a pinned contact line. Since mass is lost uni-
formly from the surface, but there is less mass difference between the profiles near the
contact line, fluid must flow from the centre to the edge.

Advancing and receding contact angles

It is often observed that the advancing contact angle is different from the receding
contact angle, so that the motion of the contact line might be described by

v =







−KR(θ
3
R − θ3), θ < θR,

0, θR < θ < θA,

KA(θ
3 − θ3A), θA < θ.

(2.62)

This is what is happening in the coffee case. When the stain evaporates the contact
angle first changes gradually from the advancing to the receding contact angle before
the contact line finally recedes. Thus there is a significant time during which the contact
line is pinned.

We can redo the analysis of the previous section with a given contact length, with a
pinned contact line and varying contact angle (see Problem Sheet 3). Now the quasi-
steady solution is of the form

h =
3A(t)

4s3
(s2 − x2),

where s is independent of time. Note that since the position of the contact line is fixed,
the contact angle θ must change as A(t) changes. This does not give a contradiction
provided that the resulting value of θ = −3A(t)/2s2 lies in the the range of contact
angles for which the contact line is pinned, see (2.62).

Then, with a use of the thin film approximation and a velocity scaling such that the
dimensionless evaporation rate is unity, mass conservation gives

−2s =
d

dt

∫ s

−s
h dx = Ȧ.
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One can show that the mean velocity is now given by

ū1 =
2sx

3A

and the flow is outward towards the contact line, carrying dissolved coffee to the rim
of the drop where it is deposited as the liquid evaporates. This is what is observed
experimentally.

A more detailed model of this problem (incorporating non-uniform evaporation rates)
was presented by R. D. Deegan et al., Nature 389, 827 (1998).
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3 Flow in Porous Media

3.1 The basics: Darcy’s law

In B.6.a you saw that the flow within a porous medium may be modelled by Darcy’s
law

u = −k
µ
(∇p+ ρg êz) (3.1)

for some constant k (called the permeability). This is to be solved along with the
incompressibility of the liquid, i.e.

∇ · u = 0

and with the boundary condition that the normal liquid velocity should be continuous
at rigid boundaries, i.e.

[u · n]+− = 0,

or that the pressure, p, be given at free surfaces.
It is useful to note that when the density of the liquid in question does not vary

spatially then we may rewrite (3.1) as

u = −k
µ
∇(p+ ρgz). (3.2)

To a certain extent, (3.1) is a phenomenological law that satisfies two basic require-
ments: (i) flows are driven by pressure gradients (from high pressure to low) and (ii)
the flow speed for a given pressure gradient decreases with increasing liquid viscosity
µ. For small Reynolds number flows this law is found to be in good agreement with
experimental data. Here, however, we shall present a plausible derivation of Darcy’s law
based on the technique of homogenization — averaging the behaviour at the micro-scale
to obtain a law applicable at the macro-scale.

3.1.1 Homogenization

We begin from the Navier–Stokes equations for an incompressible Newtonian fluid of
constant density ρ sitting within a rigid porous medium. We have that

ρu·∇u = −∇p+ µ∇2u, ∇ · u = 0, (3.3)

which must be solved subject to the no-slip boundary condition on the surface, S, of
the porous medium, i.e.

u = 0, x ∈ S. (3.4)



3–2 OCIAM Mathematical Institute University of Oxford

Qualitatively, we expect that the pressure gradient will be imposed on a relatively
long length scale, L, while the dominant length scale for dissipation in (3.3) is the size
of the pores rp, where we require that ǫ = rp/L ≪ 1. We therefore expect that the
pore scale flow will be governed by Stokes equations (i.e. inertia is negligible) so that
the scaling form of (3.3) gives an estimate for the typical flow speed U induced by a
pressure scale P :

P

L
∼ µU

r2p
=⇒ U ∼

r2pP

µL
.

We use the scales P , U and rp to non-dimensionalize the momentum equation in (3.3)
and find that

Re u·∇u = −ǫ−1∇p+∇2u (3.5)

where

Re = ǫ
ρr2pP

µ2

is the pore scale Reynolds number (i.e. the Reynolds number based on the pore length
scale rp, rather than the macroscopic length scale L). In what follows, we shall assume
that Re ≤ O(ǫ) so that the inertial term in (3.5) can be neglected.

To make progress we shall assume that the porous matrix is periodic on the pore
scale rp though, in principle, we allow the structure to change on the macroscopic length
scale L. We shall assume that the periodic cell is a rectangular box, V , with typical
dimension O(rp). We shall therefore require u and p to be periodic on the scale of a
few cells, although again they may vary on the longer scale L. To capture these two
different length scales, we shall introduce the variables

x, X = ǫx

and allow all of our state variable (velocity, pressure, etc.) to be functions of both x and
X. We expect to see variations in these variables both on the microscopic scale and on
the macroscopic scale. We then pose power series expansions for u and p:

u = u(0) + ǫu(1) + ǫ2u(2) + ...

and
p = p(0) + ǫp(1) + ǫ2p(2) + ...

with the u(j) and p(j) all being functions of both x and X. At the two highest orders in
ǫ, i.e. O(ǫ−1) and O(ǫ0), the momentum equation (3.5) gives

∂p(0)

∂x
= 0,

∂p(1)

∂x
= −∂p

(0)

∂X
+∇2

xu
(0), (3.6)

respectively. (Here we use the notation ∂/∂x to denote the gradient with respect to the
coordinate system x.) Similarly, incompressibility gives

∇x · u(0) = 0, ∇x · u(1) = −∇X · u(0). (3.7)
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We note that the equations (3.6) and (3.7) are only linear because of our assumption that
Re ≤ O(ǫ). Nonlinear effects will enter at O(ǫ2) in the present analysis — fortunately,
we do not need to go this far.

Now, (3.6)a may be integrated once to show that

p(0) = p(0)(X).

Since (3.6)b and (3.7)a are linear equations, we can write u(0) and p(1) as a matrix
multiple of and dot product with ∂p(0)/∂X, respectively. For simplicity we do this using
the summation convention

u
(0)
i = −Kij

∂p(0)

∂Xj
, p(1) = −Aj

∂p(0)

∂Xj
+ p̄(1)(X). (3.8)

Substituting the solution form (3.8) into (3.6) and (3.7) we obtain equations for Kij and
Aj, which can in principle be solved for a given pore geometry (see, for example, Lee et

al., Int. J. Heat Mass Transfer 39, 661 (1995)). However, for our purposes it is enough
to stick to the form given in (3.8) and consider averages over the periodic cell volume
V . To do this we introduce the average over a cell

〈f〉 = 1

|V |

∫

Vf

f dV (3.9)

where Vf is the volume of fluid within the cell V . Since the functions p(0) and p̄(1) are
functions of the large scale only (and not the pore scale) we immediately have that

〈u(0)i 〉 = −〈Kij〉
∂p(0)

∂Xj
, 〈p(1)〉 = −〈Aj〉

∂p(0)

∂Xj
+ φp̄(1) (3.10)

where φ = Vf/V is the porosity of the medium — the fraction of the unit cell that is
filled by voids and hence by fluid. We note that (3.10) already has the form of Darcy’s
law. The final check that needs to be performed is the averaging of (3.7)b, which gives

∇ · 〈u(0)〉 = − 1

|V |

∫

Vf

∇ · u(1) dV = − 1

|V |

∫

S
u(1) · n dS = 0 (3.11)

where we have used the Divergence theorem and the boundary condition that the bound-
ary of the fluid domain, ∂Vf = S, is the wetted solid matrix on which the no-slip
condition gives us that u = 0.

In this course we shall only be concerned with homogeneous, isotropic media so that
〈Kij〉 = Kδij where K is a constant. In this case the leading order equation becomes a
dimensionless version of Darcy’s law

u = −K∇p (3.12)

with
0 = ∇ · u = −K∇2p
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where we have dropped superscripts (since we are only interested in the leading order
behaviour) and averages (since we are only interested in the behaviour on the macro-
scopic scale). We see immediately that the behaviour is determined entirely by the
pressure, which in turn is given by the solution of Laplace’s equation. For completeness
we rewrite (3.12) in dimensional terms:

u = −k
µ
∇p (3.13)

where the permeability k = r2pK. Equation (3.13) is precisely the form of (3.1) once
the effect of a uniform gravitational field has been taken into account. We also note
that the permeability k scales with the square of the typical pore size, rp — a relatively
sensitive dependence, as is observed experimentally.

It is important to note that the velocity given by (3.13) is actually the average fluid
velocity over the periodic cell volume V . This velocity is referred to as the Darcy velocity

and is not equal to the average fluid velocity within the pores, which is given by u/φ
— the average fluid velocity must be larger than the Darcy velocity since it has to give
the appearance of a fluid flux over a larger volume than it has available to it.

3.1.2 Example: Flow focusing

Consider a porous medium which has uniform, isotropic permeability k everywhere
except within a cylindrical inclusion of radius a in which the permeability is k′. Imagine
that far from the cylindrical inclusion a uniform flow U = ux̂ occurs. We would like to
quantify the influence of the inclusion on the flow-field.

Since the problem is steady, there is no gravity and the velocity field is given by
Darcy’s law (3.1) subject to incompressibility ∇ · u = 0 we have that the pressure field
p must satisfy Laplace’s equation

∇2p = 0.

This problem is very familiar from the potential flow problems considered in Part A Fluid
Dynamics & Waves: here the pressure p is playing the role of the velocity potential φ in
that course. Indeed, since u = ∇(−kp/µ) the effective velocity potential is φ = −kp/µ.

Far from the cylindrical inclusion we require that φ = −kp/µ ∼ Ux while at the
boundary of the inclusion we must have that the pressure and normal velocity are
continuous, i.e.

[p]a
+

a− = 0, [n·∇φ]a+a− = 0 =⇒ ∂φ

∂r

∣
∣
∣
∣
r=a+

=
∂φ

∂r

∣
∣
∣
∣
r=a−

The relevant solutions of Laplace’s equation have the form

φ = −kp/µ = (Ar +B/r) cos θ

with the cos θ term arising because of the condition at ∞. The coefficients A and B will
depend on whether we are in the region r > a or r < a. We therefore introduce A<, B<
and A>, B> to be used when r < a and r > a, respectively.



C5.7 Topics in Fluid Mechanics 3–5

(a) (b)

Figure 3.1: Streamlines for the effect on uniform flow in a porous medium (permeability
k) of a cylindrical inclusion with permeability k′. (a) A relatively impermeable inclusion,
k′/k = 0.1, diverts the flow. (b) A relatively permeable inclusion, k′/k = 10, demon-
strates the phenomenon of flow focussing, which plays a role in a number of instabilities
in porous media.

For r > a we must have A> = U to match the condition at r = ∞ while for r < a
we must have B< = 0 to avoid a divergence in the velocity field as r → 0. We therefore
have from the continuity of pressure boundary condition that

Ua+B>/a = A<a
k

k′

while the continuity of normal velocity requires that

U −B>/a
2 = A<.

Solving these equations simultaneously, we find that

φ = −kp/µ =

{

U 2k′

k+k′ r cos θ, r < a

U
(

r + k−k′

k+k′
a2

r

)

cos θ, r > a.
(3.14)

Note that in the limit k = k′, i.e. the inclusion has the same permeability as the
medium, the result reduces to φ = Ur cos θ everywhere as should be expected. If k′/k ≪
1, so that the inclusion is effectively impermeable, then we recover the classic result for
potential flow past a rigid cylinder.

By plotting the streamlines of these flows in the cases k > k′ and k < k′ we see
that the inclusion either ‘focuses’ the flow (if k′ > k) or diverts it (if k > k′) — see
figure 3.1. This is an important mechanism for instability within soluble porous media
since if the medium is dissolved by, for example, acid, it becomes more permeable and
hence more acid flows through that region dissolving yet more porous medium. This
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instability has been studied by numerous authors (see, for example, Hinch & Bhatt, J.
Fluid Mech. 212, 279, 1990). Flow focusing can also be useful because the Reynolds
number increases locally, potentially facilitating the mixing of two components.

3.2 Thermal convection

Convection is a problem of interest in a wide range of applications from understanding
the convection that happens within the Earth’s mantle to how geothermal heating (or
radioactive waste!) can drive flows within saturated rock.

For simplicity, we shall assume a linear relationship between the density ρ of the
liquid and temperature T ,

ρ = ρ0 [1− β(T − T0)] , (3.15)

where ρ0 and T0 are a reference density and temperature, respectively. The constant
β is the coefficient of thermal expansion: we expect that the density decreases as the
temperature increases and so expect that β > 0.

In this section we shall make wide ranging use of the Boussinesq approximation (that
variations in density are only important where they appear as a buoyancy term). We
shall also assume that the specific heat capacities and densities of medium and fluid are
the same, and that the temperatures are also equal (since any inhomogeneities at this
microscopic scale would quickly be removed by thermal diffusion). The temperature
field within the porous medium is then described by the advection-diffusion equation

∂T

∂t
+ u · ∇T = κT∇2T (3.16)

where κT = k/ρcp is the thermal diffusivity.

3.2.1 Linear instability calculation

We consider a porous layer of depth h heated to a uniform temperature T0 +∆T at the
base and T0 at the top. At a heuristic level, we expect that for sufficiently small ∆T it
should be possible to maintain a static equilibrium: u = 0, ∂/∂t = 0. The heat equation
(3.16) then requires that ∇2T = 0 and so we have that

Ts = T0 +∆T (1− z/h),

to satisfy the boundary conditions at z = 0 and z = h. This thermal profile induces a
density profile

ρs = ρ0 [1− β∆T (1− z/h)]

so that there must also be a hydrostatic pressure profile

ps = p0 − ρ0g
[
z − β∆T (z − z2/2h)

]
.
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We now consider small perturbations to this initial state,

u = 0+ u′, T = Ts + T ′, p = ps + p′,

so that the equations of motion become

∇ · u′ = 0,

u′ = −k
µ

(
∇p′ + ρ′gêz

)
= −k

µ

(
∇p′ − βρ0gT

′êz
)
,

and the linearized heat equation is

∂T ′

∂t
+ u′ · ∇Ts = κT∇2T ′ =

∂T ′

∂t
− w′∆T/h.

(Note that we are making use of the Boussinesq approximation in assuming that ∇ · u′ =
0.)

We non-dimensionalize these equations by letting

(x, y, z) = h(X,Y,Z), u′ =
κT
h
U, t =

h2

κT
τ, p′ =

µκT
k
P, T ′ = ∆T Θ (3.17)

so that we have

∇ ·U = 0, (3.18)

U = −∇P +Ra Θ êZ, (3.19)

and

∂Θ

∂τ
−W = ∇2Θ (3.20)

where the Rayleigh number

Ra =
βρ0g∆Tkh

µκT
(3.21)

measures the buoyancy force relative to the dissipation (thermal and viscous).
We now need to analyse the system of equations (3.18)-(3.20). To simplify this, we

first take the curl of (3.19) since we are then freed from having to determine the pressure
perturbation P . Taking the curl again and using the result that ∇ ∧ ∇ ∧U = −∇2U
since U is incompressible, we have

∇2U = Ra
(
−ΘXZ êX −ΘY Z êY +∇2

HΘêZ
)
, (3.22)

where ∇2
H = ∂2X + ∂2Y is the horizontal/planar Laplacian. In particular, by dotting with

êZ we find that

∇2W = Ra∇2
HΘ, (3.23)
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Note that equations (3.20) and (3.23) constitute two equations for the unknowns W
and Θ and are to be solved subject to the boundary conditions

W = 0, Θ = 0 (3.24)

on Z = 0, 1. Once these are determined we could, in principle, solve for the other
velocity components and the pressure.

To solve the problem (3.20), (3.23) and (3.24) we suppose a normal mode decompo-
sition

W = ω(Z) exp
(
σt+ ipX + iqY

)
, Θ = ϑ(Z) exp

(
σt+ ipX + iqY

)
.

We then have the eigenvalue problem

σϑ− ω =

(
d2

dZ2
− α2

)

ϑ, (3.25)

(
d2

dZ2
− α2

)

ω = −Ra α2ϑ, (3.26)

where α2 = p2 + q2, with boundary conditions

ω(0) = ω(1) = ϑ(0) = ϑ(1) = 0. (3.27)

We see by inspection that a solution for the eigenvalue problem (3.25)-(3.26) is

ω(Z) = sinmπZ, ϑ(Z) =
m2π2 + α2

α2Ra
sinmπZ (3.28)

for some integer m > 0 (to avoid the trivial solution). The growth rate

σ =
Ra α2

m2π2 + α2
−m2π2 − α2 (3.29)

Since σ is real, instability is characterised by σ > 0. We can see that σ decreases as the
mode number m increases; therefore the value m = 1 gives the most unstable value of
σ. Since σ increases with Ra, we see that σ > 0 (for m = 1) if Ra > Rac(α), where

Rac(α) =
(π2 + α2)2

α2
(3.30)

In turn, this value of the Rayleigh number depends on the selected value of α. Since
an arbitrary disturbance will excite all wave numbers in the X and Y directions, it is
the minimum value of Rac(α) that determines the absolute threshold for stability. The
minimum of Rac(α) is obtained when α = π so that

min
α

Rac(α) = Rac(π) = 4π2. (3.31)

We therefore conclude that the static heated state is unstable if Ra > 4π2. The
detailed value of this instability threshold of course depends on the boundary conditions
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applied. However, the picture is qualitatively the same in these cases. The picture is
also qualitatively similar for the heating of a thin layer of viscous liquid between two
horizontal plates, although in this case the Rayleigh number becomes

Ra =
βρ0g∆Th

3

µκT
, (3.32)

which is the same as (3.21) for porous media with the permeability k replaced by the
square of the layer thickness, h2.

3.3 Double-diffusive convection

Double-diffusive convection refers to motion that is generated by buoyancy in the case
where the density depends on two substances or quantities. The simplest example occurs
when salt solutions are heated; in this case the two diffusing quantities are heat and salt.
Double-diffusive processes occur in sea water and in lakes, for example. Other simple
examples occur in multi-component fluids containing more than one dissolved species;
convection in magma chambers is one such.

The guiding principle behind double-diffusive convection is still that light fluid rises,
and convection occurs in the normal way (the direct mode) when the steady state is
statically unstable (i.e. when the density increases with height), but confounding factors
arise when, as is normally the case, the two substances diffuse at different rates. This is
a particularly important distinction when we are concerned with temperature and salt
for two reasons: (i) the ratio of thermal to solutal diffusivity is large and (ii) an increase
in temperature decreases the density while an increase in salt concentration increases
the density. The two species are therefore acting in different directions. In this case
different modes of convection occur near the statically neutral buoyancy state: the cells
can take the form of long thin “fingers” or the onset of convection can be oscillatory. In
practice, fingers are seen, but oscillations are not.

A further variant on the purely thermal convection discussed in §3.2 arises in the
form of convective layering. This is a long-lived transient form of convection, in which
separately convecting layers form, and is associated partly with the high diffusivity
ratio, and partly with the usual occurrence of no flux boundary conditions for diffusing
chemical species.

We pose a model for double-diffusive convection based on a density which is related
linearly to temperature T and salt composition C in the form

ρ = ρ0[1− βT (T − T0) + βC(C −C0)], (3.33)

where we take solutal and thermal expansion coefficients βC and βT to be positive
constants but have built into the equation of state the fact that the presence of salt
makes the fluid heavier. In (3.33) C0 is the (imposed) concentration of salt at the top
of the layer, z = h.
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The equation that then needs to be added to the equations used for thermal convec-
tion previously is that for convective diffusion of salt:

∂C

∂t
+ u · ∇C = κC∇2C, (3.34)

where κC is the solutal diffusion coefficient, assumed constant (although in practice it
may also depend on the temperature).

We shall assume that, in addition to the boundary condition C = C0+∆C at z = 0,
we have C = C0 at z = h. In the static situation then, we have temperature and
concentration fields

Ts = T0 +∆T (1− z/h),

Cs = C0 +∆C(1− z/h)

to satisfy the boundary conditions at z = 0 and z = h. These thermal and solutal fields
induce a density profile

ρs = ρ0 [1 + (βC∆C − βT∆T )(1− z/h)]

so that there must also be a hydrostatic pressure profile

ps = p0 − ρ0g
[
z + (βC∆C − βT∆T )(z − z2/2h)

]
.

We now consider small perturbations to this initial state,

u = 0+ u′, T = Ts + T ′, C = Cs + C ′, p = ps + p′,

so that the equations of motion become

∇ · u′ = 0,

u′ = −k
µ

[
∇p′ + ρ0g(βCC

′ − βTT
′)êz

]
.

The linearized equations for diffusion of heat and solute are, respectively,

∂T ′

∂t
+ u′ · ∇Ts = κT∇2T ′ =

∂T ′

∂t
− w′∆T/h.

and
∂C ′

∂t
+ u′ · ∇Cs = κC∇2C ′ =

∂C ′

∂t
− w′∆C/h.

We non-dimensionalize these equations in the same way as in §3.2.1 using (3.17). In
addition we let

C ′ = ∆Cχ

so that we have

∇ ·U = 0, (3.35)
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U = −∇P +

(

Ra Θ− Ras
Le

χ

)

êZ, (3.36)

where

Ras =
βCρ0g∆Ckh

µκC
(3.37)

is the solutal Rayleigh number measuring the buoyancy force relative to the dissipation
(solutal and viscous) and

Le =
κT
κC

(3.38)

is the Lewis number measuring the relative diffusivity of solute and heat. Note also that

Ras = Ra Le×N

where

N =
βC∆C

βT∆T
. (3.39)

We also have that

∂Θ

∂τ
−W = ∇2Θ (3.40)

and

Le

(
∂χ

∂τ
−W

)

= ∇2χ. (3.41)

Proceeding in precisely the same way as in §3.2.1, we take the curl of (3.36) twice
and use incompressibility to show that

∇2W = Ra
(
∇2
HΘ−N∇2

Hχ
)

(3.42)

with ∇2
H again denoting the horizontal Laplacian. Note that (3.40)-(3.42) is a system

of equations in the functions Θ, χ and W that is to be solved subject to the boundary
conditions

W = Θ = χ = 0 (3.43)

at Z = 0, 1.

By inspection, solutions satisfying the temperature and salinity equations are

W = sin(mπZ) exp (σt+ ipX + iqY ) (3.44)
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Θ =
1

σ + α2 +m2π2
sin(mπZ) exp (σt+ ipX + iqY ) , (3.45)

χ =
Le

σLe + α2 +m2π2
sin(mπZ) exp (σt+ ipX + iqY ) , (3.46)

where α2 = p2 + q2.
We substitute the solutions (3.44)-(3.46) into the governing equation (3.42) to obtain

a quadratic in σ, which can be written in the form

Aσ2 +Bσ + C = 0, (3.47)

where
A = (α2 +m2π2)Le,

B = (α2 +m2π2)2
[
1 + Le

]
+ α2

(
Ras − Ra Le

)
,

and
C = (α2 +m2π2)3 + [Ras − Ra]α2(α2 +m2π2).

Instability occurs if either of the two roots of (3.47) has positive real part. Since Le
is a property of the fluid, we take it as fixed and study the effect of varying Ra and Ras
on the stability boundaries where Re(σ) = 0. Firstly, if Ra < 0 and Ras > 0, then A,
B and C are all positive. From this it follows simply that Re(σ) < 0 and we conclude
that when both temperature and salinity fields are stabilizing, the state of no motion is
linearly stable.

To find regions of instability in the (Ras,Ra) plane, it suffices to locate the curves
where Re(σ) = 0. There are two possibilities:

Exchange of stability (Direct mode) One possibility is that Re(σ) = 0 occurs
when σ = 0. From (3.47), this is when C = 0, or Ras = Ra − (α2 +m2π2)2/α2. For
each value of α, this is a single curve and since we know that Re(σ) < 0 in Ra < 0 and
Ras > 0, this immediately tells us that a direct instability occurs if

Ra− Ras > min
α

(α2 + π2)2

α2
= 4π2. (3.48)

This direct transition is the counterpart of the onset of purely thermal convection (§3.2),
and shows that Ra− Ras is the effective Rayleigh number.

Hopf bifurcation The other way in which Re(σ) = 0 is for the complex conjugates
values of σ to cross the imaginary axis at ±iΩ, say. The condition for this is B = 0 and
C > 0, which is again a single curve, so that oscillatory instability occurs for

RaLe− Ras >

(
α2 +m2π2

)2

α2
(1 + Le)

so that

Ra−Ras/Le > 4π2(1 + 1/Le). (3.49)
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Statically stable

Oscillatory Instability

Monotonic Instability

Ras

Ra

Figure 3.2: Schematic stability diagram for double-diffusive convection with Le > 1.

Note that we also require C > 0 to obtain this oscillatory instability and so

Ra− Ras <
(α2 + π2)2

α2
= 4π2 (3.50)

in the critical case. In physically relevant situations, it is usually the case that Le > 1.
The above condition therefore means that the oscillatory instability cannot be seen for
the same regions of parameter space as the monotonic instability. Instead the oscillatory
instability is seen in regimes of parameter space that the exchange of stabilities calcu-
lations would have predicted would be stable. Figure 3.2 shows schematically (Ras,Ra)
parameter space and where we expect the various types of instability to occur.

A more detailed picture and discussion of the geophysical relevance of this scenario
can be found J. S. Turner, Buoyancy Effects in Fluids, CUP. There it is noted that
the observation of oscillatory instability is generally rare. Furthermore, a characteristic
feature of ‘double-diffusive’ convection is that the monotonic instability develops into
finger-like structures. An example of this is shown in figure 3.3 for the case of a pure ice
block melting in salty water. The fact that these fingers propagate roughly horizontally
(rather than the melt water rushing upwards without mixing, as one might expect) is
one reason why the idea of supplying fresh water to dry countries by towing icebergs
and siphoning off the melt water is not feasible! See Huppert and Turner, Nature 271,
46 (1978) for more discussion.

3.4 Horizontal gravity-driven flows

Variations in buoyancy usually give rise to vertical flows, as studied in the last section
of thermal convection. However, as we saw with droplet spreading in §2.2.3 the presence
of an impermeable boundary allows vertical density differences to drive horizontal flows.
Here we shall consider the problem of a finite volume V of fluid with density ρ released
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Figure 3.3: Experimental observation of the formation of double-diffusive fingers caused
by melting of an ice block in salty water (with salt stratification). Taken from Huppert
and Turner, Nature 271, 46 (1978).

above an impermeable boundary within a porous medium. This is the porous medium
analogue of the droplet spreading problem considered in §2.2.3 neglecting the effect of
surface tension, which is an extremely complicated problem for flow in porous media.

3.4.1 Long, thin flows

We begin by considering the scaling behaviour of Darcy’s law for an axisymmetric flow
with typical vertical scale H and radial scale R such that δ = H/R ≪ 1. The ve-
locity within the porous medium u = (u,w) has typical scales u ∼ U , w ∼ W where
conservation of mass tells us that

W

H
∼ 1

R2
×RU =⇒ W ∼ δU.

Considering the horizontal component of Darcy’s law we have that

∂p

∂r
= −µ

k
u =⇒ P ∼ µ

k
RU

where P is the typical scale for pressure. Looking at the terms that appear in the vertical
component of Darcy’s law we notice that

µW/k

∂p/∂z
∼ µW/k

P/H
∼ µδU/k

µRU/kH
∼ δ2 ≪ 1.

The vertical component of Darcy’s law therefore gives that

∂p

∂z
≈ −ρg (3.51)
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so that the pressure is approximately hydrostatic, just as we found for lubrication theory
in §2.2. While the idea presented here as well as the result are very similar to what we
saw in lubrication theory, purists prefer to talk of the approximation made here as a
‘long wavelength approximation’ (rather than the lubrication approximation).

3.4.2 Porous medium gravity currents

For simplicity, we shall consider the problem of a blob of fluid of density ρ, volume V
released within a porous medium bounded below by an impermeable boundary. Just as
for a droplet released on a flat plate in the absence of a porous medium, we anticipate
that the liquid will spread out horizontally along the boundary and will at late times
satisfy the long wavelength assumption made above. We would like to calculate the
evolution of the current profile z = h(r, t) at late times and, in particular, the radial
extent of the current, a(t). To do this, we begin with (3.51), which may be integrated
once to give

p = pa + ρg
[
h(r, t) − z

]
(3.52)

where pa is the atmospheric pressure within the porous medium. Examining now the
horizontal component of Darcy’s law, we find that the horizontal velocity component is

u = −k
µ

∂p

∂r
= −kρg

µ

∂h

∂r
. (3.53)

We note that this horizontal velocity is independent of z and so ū = u. Being careful to
incorporate the porosity φ into the equation of conservation of mass, we have that local
continuity gives

φ
∂h

∂t
= −1

r

∂

∂r
(ruh) =

kρg

µr

∂

∂r

(

rh
∂h

∂r

)

. (3.54)

The nonlinear diffusion equation (3.54) is to be solved together with the global conser-
vation of mass, which may be written

V = 2πφ

∫ a(t)

0
rh dr. (3.55)

We non-dimensionalize (3.54)-(3.55) by introducing the length scale (V/φ)1/3 and time
scale (φ2V )1/3µ/kρg. We must then solve

∂H

∂T
=

1

R

∂

∂R

(

RH
∂H

∂R

)

(3.56)

subject to

2π

∫ A(T )

0
RH dR = 1 (3.57)
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and H(A(T ), T ) = 0. We would like to find the long time behaviour of the system
(3.56)-(3.57) and so look for a similarity solution. Examining the scaling behaviour of
these equations, we let

H(R,T ) = T−1/2χ(η), R = ηT 1/4, A(T ) = ηNT
1/4

and find that (3.56) becomes

−1

4

(

2χ+ η
dχ

dη

)

=
1

η

d

dη

(

ηχ
dχ

dη

)

,

which may be integrated once to give

η2χ = −4ηχ
dχ

dη
+ C.

As η → 0 we expect χ and χη to be well behaved so that the constant of integration
C = 0. Integrating once again, we find that

χ =
1

8

(
η2N − η2

)

where the constant of integration has been chosen to ensure that χ(ηN ) = 0.
The value of ηN , which determines the spread of the current, is itself determined

from the similarity form of (3.57), which reads

1 = 2π

∫ ηN

0
ηχ dη =

π

16
η4N .

Hence ηN = 2/π1/4 and the radius of the current for late times T ≫ 1 is given by

A(T ) =
2

π1/4
T 1/4. (3.58)

We have assumed in this calculation that the porous medium is initially dry. In
reality would have to worry about surface tension etc. However, many flows of interest
involve injecting a fluid of one density into a porous medium saturated with a liquid
of close but not identical density. This may substantially alleviate the problems caused
by surface tension at the pore scale. If, in addition, the porous medium is effectively
unbounded then the flow outside the current may be neglected and the analysis above
may be carried through with the density ρ replaced by the density difference ∆ρ. It is
more common in such scenarios that injection will continue indefinitely so that V ∝ t
rather than being constant. In this case r ∼ t1/2 (see problem sheet) — a result that
is useful in predicting the rate of spreading of carbon dioxide when it is pumped into
geological aquifers to mitigate the effects of climate change. More details of this topical
application can be found in M. Bickle et al., Earth Planet. Sci. Lett. 255, 164 (2007).
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4 Two-phase Flows

This chapter is largely based on the review paper by Drew [1], and the books by
Drew & Passman [2] and Fowler [3].

4.1 What is two-phase flow?

Two-phase (multi-phase) flow occurs when two (or more) phases flow simultaneously.
The two phases could be liquid/liquid, liquid/gas, liquid/solid, etc. Obviously one phase
must be fluid for flow to occur.
Some examples

liquid/liquid oil/water, e.g. in oil extraction, emulsions, alloys
liquid/gas boilers/condensers/cooling systems, aerosols, magma, e.g.

in volcanoes, champagne, food, e.g. bread, ice-cream
fluid/solid particle suspensions, fluidised beds, sedimentation,

avalanches
poroelasticity tissue/tumours/paper/oil extraction

We will only consider one-dimensional flow, typically flow of liquid and gas in a pipe.
It is observed experimentally that such flow can exist in many different flow regimes,
including bubbly flow, slug flow, churn flow, annular flow. The conditions under which
each regime takes place are determined experimentally and described using flow-regime
maps, see e.g. Fig. 16.2 in Fowler’s book [3].

4.2 A simple model

It does not make sense to try and track the complicated free boundary between the two
phases. Instead we describe the flow using averaged quantities, namely the gas fraction
α, the averaged velocities v of the gas and u of the liquid, and the averaged pressure P
(for the moment just consider incompressible, isothermal flow; otherwise we must also
consider the temperatures Tg and Tl and the densities ρg and ρl). Consider flow in a pipe
of cross-sectional area A aligned parallel to the x-axis. Define the gas fraction nα(x, t)
as the fraction of the cross-sectional area occupied by gas,

α =
area occupied by gas

A
.
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Figure 4.1: Pipe segment

Thus the liquid fraction is 1− α.

Conservation of gas

The mass of gas in a segment of pipe between x = a and x = b is

∫ b

a
Aαρg dx.

Then

Rate of change of mass = flux in − flux out.

d

dt

∫ b

a
ρgAα dx = [ρgAαv]

a
b

where v = cross-sectional average of the gas velocity. Thus

∫ b

a

∂

∂t
(ρgAα) +

∂

∂x
(ρgAαv) dx = 0.

Since a and b are arbitrary, the integrand must be identically zero. If we assume the
gas is incompressible (so that ρg is constant) and that A is constant, then

∂α

∂t
+

∂

∂x
(αv) = 0. (4.1)

Similarly, conservation of mass in the liquid gives

∂

∂t
(1− α) +

∂

∂x
((1− α)u) = 0, (4.2)

where u = cross-sectional average of the liquid velocity.

Conservation of momentum

Suppose liquid and gas both satisfy the one-dimensional Euler equations

ρg

(
∂v

∂t
+ v

∂v

∂x

)

= −∂p
∂x
, (4.3)

ρl

(
∂u

∂t
+ u

∂u

∂x

)

= −∂p
∂x
, (4.4)

where we assume that the average pressure p is the same in both phases. We have
also neglected any drag (both between the phases and due to the pipe). We have thus
obtained four equations for the four unknowns α, u, v, and p.
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Typical boundary conditions

For example, we pump in gas and fluid at a given rate at one end (x = 0, say), while
the other end (x = L, say) is open to the atmosphere: thus volume fraction and fluxes
given at x = 0, pressure given at x = L.

α = α0, αv = qg, (1− α)u = qn at x = 0,

p = pa at x = L.

Characteristics

Write the system in the form
Aψt +Bψx = 0,

where ψ = (α, u, v, p)T . Then







1 0 0 0
−1 0 0 0
0 0 ρg 0
0 ρl 0 0







︸ ︷︷ ︸

A







α
u
v
p







t

+







v 0 α 0
−u (1− α) 0 0
0 0 ρgv 1
0 ρlu 0 1







︸ ︷︷ ︸

B







α
u
v
p







x

.

The characteristics are given by dx/dt = λ where det(B − λA) = 0.

B − λA =







v − λ 0 α 0
−(u− λ) (1− α) 0 0

0 0 ρg(v − λ) 1
0 ρl(u− λ) 0 1






.

Thus
det(B − λA) = ρg(1− α)(v − λ)2 + ρlα(u− λ)2 = 0.

Let

s =

√

ρ+ g(1 − α)

ρlα
.

(Typically s≪ 1). Then
u− λ± is(v − λ) = 0,

i.e.

λ =
u± isv

1± is
=
u+ s2v ± is(v− u)

1 + s2
.

[The other two characteristics are dx/dt = ∞, i.e. t = constant. One is the first integral

∂

∂x
(αv + (1− α)u) = 0.

We can also eliminate p using

ρg (vt + vvx) = ρl (ut + uux)
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and then find p a posteriori using

∂p

∂x
= −ρg (vt + vvx) .

]

So (unless u = v) the system is elliptic, and not hyperbolic as we would have expected.
Problems that are elliptic in space and time are ill-posed, in the sense of being catas-
trophically unstable—arbitrarily small wavelengths can grow arbitrarily quickly.

An ill-posed system of equations is mathematically unacceptable. It tells us that
something is wrong with the model. One possibility is to include previously neglected
physical effects, e.g. surface tension or viscosity. Both of these can help to oppose the
instability.

In any case we need to average more carefully.

More careful averaging

Net gas mass in the segment from x = a to x = b is

∫ b

a

(∫ ∫

gas
ρg dy dz

)

dx.

Recall that

αA =

∫ ∫

gas
dy dz.

Define the average density as

ρg =
1

αA

∫ ∫

gas
ρg dy dz = cross sectional average of gas density.

Then the net gas mass in the segment from x = a to x = b is

∫ b

a
ρgαAdx.

The net gas flux through x = a (say) is

∫ ∫

gas
ρgv dy dz

∣
∣
∣
∣
x=a

.

Define the average gas velocity by

v =
1

αAρg

∫ ∫

gas
ρgv dy dz.

Then the net gas flux is αAρgv. Conservation of gas leads to

d

dt

∫ b

a
αAρg dx+

[
αAρgv

]b

a
= 0.
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When A is constant an argument similar to that used before leads to

∂

∂t

(
αρg

)
+

∂

∂x

(
αρgv

)
= 0.

This is what we got before, but now we have careful definitions of the average density
and velocity.

Similarly for the liquid we have the definitions

(1− α)A =

∫ ∫

liquid
dy dz,

ρl =
1

(1− α)A

∫ ∫

liquid
ρl dy dz,

u =
1

(1− α)Aρl

∫ ∫

liquid
ρludy dz,

so that
∂

∂t
((1− α)ρl) +

∂

∂x
((1− α)ρlu) = 0.

Now consider conservation of momentum. The net momentum of the gas in the segmet
[a, b] is

∫ b

a

(∫ ∫

gas
ρgv dy dz

)

dx =

∫ b

a
αAρgv dx.

The flux of momentum through x = a (say) is
∫ ∫

gas
ρgv

2 dy dz := αAρgv
2
∣
∣
∣
x=a

The net pressure force on x = a exerted on the gas phase is
∫ ∫

gas
pg dy dz := αApg.

Also suppose there is a horizontal force Mg per unit length in the segment (e.g. wall
friction etc.) so that Newton’s second law reads

d

dt

∫ b

a
αAρgv dx = −

[

αAρgv
2
]b

a
−
[
αApg

]b

a
+

∫ b

a
Mg dx.

Combining everything together, we get

∂

∂t

(
αρgv

)
+

∂

∂x

(

αρgv
2
)

=
Mg

A
− ∂

∂x

(
αpg

)
.

This is almost the same as what we had previously. If we suppose that “the average of
the square = the square of the average”, i.e. v2 = v2, then

d

dt

∫ b

a
αAρgv dx = −

[
αAρgv

2
]b

a
−
[
αApg

]b

a
+

∫ b

a
Mg dx,
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Figure 4.2: Annular flow in a circular pipe

which, on using conservation of mass, can be written as

αρg

(
∂v

∂t
+ v

∂v

∂x

)

=
Mg

A
− ∂

∂x

(
αpg

)
.

This still isn’t quite the same: if we negkect the external force Mg, the right-hand side
has α inside the x-derivative—this suggests that if pg is constant a gradient in α could
drive a flow which seems highly unlikely.

The resolution is to examine Mg more carefully. To fix ideas consider annular flow
in a circular pipe of radius R (so that A = πR2) with the gas-liquid interface given by
r = η(x, t) (so αA = πη2). We see that the interfacial gas pressure pgi contributes a
horizontal component of force whenever ∂η/∂x 6= 0.

The net horizontal force due to the interfacial pressure is

∫ b

a
pgi2πη sin θ ds =

∫ b

a
pgi2πηηx dx =

∫ b

a
pgiA

∂α

∂x
dx.

It can be shown that this holds for any two-phase flow, not just when the geometry
is annular. We define

Mg = Apgi
∂α

∂x
+M ′

g,

where pgi is the interfacially-averaged pressure, so that M ′
g contains all the horizontal

forces not due to pressure, e.g. drag due to the fluid and/or the tube wall. Hence we
have

∂

∂t

(
αρgv

)
+

∂

∂x

(

αρgv
2
)

=
M ′
g

A
− α

∂pg
∂x

+ (pgi − pg)
∂α

∂x
.

If we assume that the interfacially-averaged and bulk-averaged pressures are equal (as
is usually the case), then we get

∂

∂t

(
αρgv

)
+

∂

∂x

(

αρgv
2
)

=
M ′
g

A
− α

∂pg
∂x

,

which does indeed reduce to our previous equation if we set v2 = v2 and M ′
g = 0.

Similarly for the liquid we get

∂

∂t
((1− α)ρlu) +

∂

∂x

(

(1− α)ρlu
2
)

=
M ′
l

A
− (1− α)

∂pl
∂x

.

Usually pg = pl = p, although we could put surface tension in here.
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In general, we will have v2 = v̄2 only if v is uniform in the cross-section, i.e. we have
a “plug flow”. This is probably true if the gas, which is effectively inviscid, but probably
not in the liquid, which may have a non-trivial flow profile. We are confronted with a
closure problem: our model for α, ū, v̄ and p̄ also involves u2 and v2 If we tried to derive
equations for these, we would find they involve yet higher “moments”, eg. u3, u4, . . .,
and it is impossible ever to obtain a closed model. We therefore have to make some
empirical constitutive “closure” assumptions, and there are two main options: Profile
coefficients and Reynolds stresses.

4.2.6 Profile coefficients and Reynolds stresses

Suppose there exist profile coefficients Dg, Dl ≥ 1 such that v2 = Dg v̄
2 and u2 = Dlū

2.
These coefficients depend on the Reynolds numbers in each phase and on the flow regime,
and are usually close to one (particularly Dg ≃ 1).

Let’s investigate what happens if we include a Dl ≥ 1 profile coefficient in the
momentum balance for the liquid phase. This means that (4.4) is replaced by

ρl[(1− α)u]t + ρl[Dl(1− α)u2]x = −(1− α)px, (4.5)

with a profile coefficient Dl that is not equal. The liquid and gas phase densities are
assumed to be constant as before. The new momentum equation can also be written as

ρl
[
(1− α)ut + (2Dl − 1)(1 − α)uux − (Dl − 1)u2αx

]
= −(1− α)px. (4.6)

The matrices A and B are now

A =







1 0 0 0
−1 0 0 0
0 0 ρg 0
0 (1− α)ρl 0 0






,

B =







v 0 α 0
−u 1− α 0 0
0 0 ρgu 1

−(Dl − 1)ρlu
2 ρl(2Dl − 1)(1 − α)u 0 1− α






.

The characteristic speed λ now satisfies (with s defined as before)

(λ− u)2 = (Dl − 1)[u2 + 2u(λ− u)]− s2(λ− v)2. (4.7)

or

λ2 − 2(Dlu+ s2v)

1 + s2
λ+

Dlu
2 + s2v2

1 + s2
= 0. (4.8)

This quadratic equation has real roots iff

(
Dlu+ s2v

1 + s2

)2

>
Dlu

2 + s2v2

1 + s2
. (4.9)
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For small δ = Dl − 1 and s, this becomes

Dl − 1 > s2(u− v)2/u2, (4.10)

which means that in practice a very small value of Dl−1 > 0 is sufficient to remove this
ill-posedness issue.

Reynolds stresses arise in turbulent flows, where significant velocity fluctuations
arise around the mean flow. Let v = v̄ + v′, so that v′ = 0, and v′ represents velocity
fluctuations about the mean. Then

v2 = v2 + v′2.

So we get
∂

∂t
(αρgv) +

∂

∂x

(
αρ̄g v̄

2
)
+

∂

∂x

(

αρ̄gv′2
)

= −α∂ρg
∂x

+
M ′
g

A
.

Now the term ρgv′2 represents the average stress caused by the velocity fluctuations,
and the Reynolds stress is defined by

τRe
g = −ρgv′2.

A similar term can also arise for the liquid phase. We still have closure problem, i.e. we
have to postulate a constitutive law for τRe

g . Fowler [3] suggests setting the Reynolds

stress proportional to αρgv′
2
, which effectively means introducing a profile coefficient.

Alternatively, one can introduce eddy viscosities, in which case we let

τRe
g = Kg

∂v

∂x
, τRe

l = Kl
∂u

∂x
.

These eddy viscosities Kg and Kl can be very large in turbulent flows, many orders of
magnitude larger than the molecular viscosity of the fluid.

4.2.7 Full equations for annular flow

The equations for flow with two incompressible phases (and equal pressures) are given
by

∂α

∂t
+

∂

∂x
(αv) = 0, (4.11a)

−∂α
∂t

+
∂

∂x
((1 − α)u) = 0, (4.11b)

ρg

[
∂

∂t
(αv) +Dg

∂

∂x

(
αv2

)
]

= −α∂p
∂x

+
M ′
g

A
, (4.11c)

ρl

[
∂

∂t
((1− α)u) +Dl

∂

∂x

(
(1− α)u2

)
]

= −(1− α)
∂p

∂x
+
M ′
l

A
, (4.11d)

We assume Dg = 1 and Dl ≥ 1 (but not much) and constant. We also need constitutive
relations for the drag forces exerted on each phase. The form of these depends critically
on the flow regime.
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Figure 4.3: Sketch of annular flow in a pipe.

For the moment consider annular flow in a gas core. Then we can write

M ′
g = −Fgl, (drag on gas due to liquid)

M ′
l = −Flg − Flw, (drag on liuquid due to gas and wall)

where Fgl = −Flg.
Now we pose empirical forms for each drag force: For turbulent flow,

Flw = flwCpρlu|u|, (4.12)

where cp = circumference of a pipe, e.g. cp = 2πR for a circular pipe, and flw is a
dimensionless friction factor. This friction factor is a function of the Reynolds number
but is approximately constant and ≪ 1. Similarly,

Fgl = −Flg = fglCiρg(v − u)|v − u|, (4.13)

where fgl is a dimensionless factor that is a again roughly constant and ≪ 1, and Ci is
the interface circumference. For axisymmetric annular flow, Ci = 2πR

√
α.

4.2.8 Compressible bubbly flow

Figure 4.4: Sketch of compressible bubbly flow in a pipe.

We consider now bubbly flow in a vertical pipe, where the gas in the bubbles is
treated as compressible and the liquid as incompressible, and include gravity in M ′

g and
M ′
l .

(αρg)t + (αρgv)x = 0 (4.14a)

−αt + ((1 − α)u)x = 0 (4.14b)

αρg(vt + vvx) = −αpx − αρgg −
Fgl
A
, (4.14c)

ρl
[
((1 − α)u)t +Dl((1− α)u2)x

]
= −(1− α)px − (1− α)ρlg +

Fgl
A
, (4.14d)

p = P (ρg). (4.14e)

where we assume constant profile coefficients Dg = 1 and Dl greater or equal to, but
close to, one. In the last equation, we have assumed a barotropic gas, where P is a
function of ρg that needs to be specified, e.g. the ideal gas law P = c2ρg, where c is the
speed of sound.

For the drag term, we can start from an expressio for the drag term on a single
bubble,

CDπa
2ρl(v − u)|v − u|, (4.15)
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where a is the radius of the bubble, and CD is a drag coefficient. If we n is the number
of bubbles per unit volume, then n times the expression in (4.15) gives the total drag.
The number of bubbles per volume is related to the gas volume fraction via

α =
4

3
nπa3.

Using this to eliminate n gives the total drag

Fgl
A

=
3CDρlα

4a
(v − u)|v − u| (4.16a)

However, this expression still contains a, which is not a parameter but a variable that
depends on the gas density and may change, since the gas is assumed to be compressible.
However, it can easily be expressed in terms of ρg via mass conservation if we introduce
a reference value for ρ and a0, since then ρa3 = ρ0a

3
0, thus

a = a0

(
ρ0
ρg

)1/3

. (4.16b)

4.2.9 One fluid models

The models in sections 4.2.7 and 4.2.8 are examples of two-fluid models, where each
phase is represented by an individual velocity field. This is contrasted with one-fluid
models, of which the homogeneous model is a specific case. Here, it is assumed that
both phases have the same velocity, u = v, and one considers momentum conservation
for the mixture, which is, in the simplest form

ρt + (ρu)x = 0, (4.17a)

ρ(ut + uux) = −px, (4.17b)

where ρ = αρg + (1− α)ρl is the mixture density.
Another type of one-fluid model are drift-flux models, which do allow for a relative

motion, but only formulate one momentum balance equation for the total momentum,

[αρgv + (1− α)ρlu]t + [αρgv
2 + (1− α)ρlu

2]x = −px.

Instead of a second momentum equation, v − u is specified throught a constitutive law
in terms of α. A model of this type will be discussed on the problem sheet. Drift-
flux models are typically useful when there is little relative motion between the phases.
In contrast, for annular pipe flow, where the gas flows along the core while the liquid
occupies a layer adjacent to the pipe walls, the shear stress exchange between the two
phases is diminished and the flow velocities may be high and quite different for the two
phases, so that frequently two-fluid models are more appropriate.
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4.3 Derivation of general (3D) averaged model equations

Microscopic governing equations

Consider a two-phase or two-component fluid, e.g. two different liquids, a liquid and a
gas, or even a solid in a gas as long as the combination behaves fluid-like, eg. a dusty
gas. We assume that the two phases occupy different, possibly very complicated shaped,
regions in space, so that each point in space is occupied by exactly one of the phases
unless the point happens to be exactly on the interface between two phases. We assume
that we can describe the fluid by a density field ρ(x, t) and a velocity vield u(x, t).
Away from the interface between the two phases, these obey the balance equations for
mass and momentum,

∂ρ

∂t
+∇ · (ρu) = 0, (4.18)

∂

∂t
(ρu) +∇ · (ρuu) = −∇(ρp) +∇ · (ρτ ) + ρg, (4.19)

respectively. Here, ρg represents gravity, but can be replaced by any other body force.
Notice also that we have split the total stress tensor into a pressure contribution and
the extra stress tensor. We can frequently treat these two (and other) balance equations
together by using the general form

∂

∂t
(ρψ) +∇ · (ρψu) = −∇ · J + ρf, (4.20)

with either ψ = 1, J = 0, f = 0 for the mass balance equation and ψ = u, J = pI − τ ,
f = g, for the momentum equation.

At the interfaces, we have jump conditions. To formulate them, we label the two
phases as “1” or “2”. Then, the jump conditions are

[ρ(u− ui) · nk]lk = 0, (4.21)

[ρu(u− ui) · nk − (pI − τ ) · nk]lk = γκnk (4.22)

for mass and momentum, respectively, where ui is the velocity of a point xi on the
interface. Here, k 6= l and [ψ]lk the jump of a quantity ψ across the interface from phase
k to phase l,

[ψ]lk = lim
x→xi
x∈phase l

ψ − lim
x→xi
x∈phase k

ψ,

where xi is a point on the interface, and finally nk denotes the normal at the interface
pointing out of phase k. Thus, n1 = −n2. The quantities γ and κ are the surface
tension and the curvature of the interface (positive (concave) towards −nk). These
jump conditions, too, can be written in a general form as

[ρψ(u− ui) · nk − J · nk]lk = mψ, (4.23)

where mψ are the interfacial source terms for the quantity ψ.
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Profile function

The derivation of the averaged equations is carried out in two steps: First, we split the
balance law into to field equations for each phase with the help of a profile function,

χk(x, t) =

{

1 if x ∈ phase k,

0 otherwise.
(4.24)

k = 1, 2, and then, in a second step, we perform the actual averaging.

For the first step, we multiply the general form of the balance law with χk, k = 1, 2,

χk
∂

∂t
(ρψ) + χk∇ · (ρψu) = −χk∇ · J + χkρf.

We would like to rearrange this equation so that the derivatives are taken of products
of the profile function with ψ, etc., since then the subsequent averaging will lead to
averaged quantities associated with one of the two components. For this purpose, we
need some kind of rule how to differentiate products of χk with other functions.

Since the profile function is discontinuous, its derivatives are defined ins the sense of
generalised functions i.e. in the distributional sense, e.g.,

∫

Ω
φ(x, t)

∂χ(x, t)

∂t
dV dt ≡ −

∫

Ω

∂φ(x, t)

∂t
χ(x, t)dV dt,

∫

Ω
φ(x, t)∇χ(x, t)dV dt ≡ −

∫

Ω
∇φ(x, t)χ(x, t)dV dt,

for any φ ∈ Φ, where Ω is a set in space and time, and Φ is the set of all test functions,
that is, functions that have derivatives to all orders and compact support that lies in
Ω.1

The expression ∇(χkf), where f may also have jumps across the interface between
the phases but is smooth (sufficiently differentiable) elsewhere, is defined analogously,

∫

Ω
φ(x, t)∇(χk(x, t)f(x, t))dV dt = −

∫

Ω
∇φ(x, t)χk(x, t)f(x, t)dV dt

= −
∫

Ωk

∇φ(x, t)f(x, t)dV dt

=

∫

Ωk

φ(x, t)∇f(x, t)dV dt−
∫

Sk

nkφ(x, t)fki(x, t)dSdt

=

∫

Ω
φ(x, t)χk(x, t)∇f(x, t)dV dt

−
∫

Ω
nkφ(x, t)fki(x, t)δk(x) dV dt, (4.25)

1The concept of distributions and the terminology that goes along with it was introduced in earlier
courses, for example, in B5a: “Techniques of Applied Mathematics”.
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where Sk = ∂Ωk denotes the interface between the phases, δk(x) denotes the δ-function
for the interface, and fki denotes the value of the function f evaluate on the phase k
side of the interface.

Thus we have

∇(χkf) = χk∇f + fkiδk(x)nk. (4.26)

Using that ∇χk = δk(x)nk (to be verified as as an exercise on the problem sheet), we
can also write this as

∇(χkf) = χk∇f + fki∇χk. (4.27)

We note that the first term on the right hand side, χk∇f , is a bit ambigous if f
does have a jump across Sk. From the last step in the derivation (4.25), this product
is taken to mean the classical derivative of f inside Ωk. However, it could also be read
as a product of the jump function χk with a generalised function ∇f that contains a
δ-function at the interface, and it is not clear what a product of a jump function and
a δ-function centred at the location of the jump means. To remove the ambiguity, we
will always assume the product χ∇f to mean “take the classical derivative of ∇f on the
region where χk = 1, and set the result to zero for all other points”. Notice that it is
not clear if this can be generalised to products of other jump functions with δ-functions,
such as f∇χ.

In a similar fashion, we obtain

∂

∂t
(χkf) = χk

∂f

∂t
+ fki

∂χk
∂t

, (4.28)

and also the topological equation,

∂χk
∂t

+ ui ·∇χk = 0. (4.29)

The derivation of these last two equations is left as an exercise (see problem sheet).

With this background information, we can manipulate the result of multiplying the
general balance equation (4.20) with χ to give

∂

∂t
(χkρψ) +∇ · (χkρψu) =−∇ (χkJ) + χkρf + ρkiψki

[
∂χk
∂t

+ ui ·∇χk

]

︸ ︷︷ ︸

=0

+ [ρkiψki(uki − ui) + Jki] · ∇χk. (4.30)

The jump conditions (4.23) are recast in distributional form as

(ρliψli(uli − ui)− J li) ·∇χl + (ρkiψki(uki − ui)− Jki) ·∇χk = −mψδk(x). (4.31)

Notice that this relation couples the last term on the right hand side of (4.30)
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Averaging

The actual averaging removes the discontinuities at the microscale and provides averaged
version to the different terms in the balance equation (4.30). Different types of averaging
are given in the literature: Averaging in space, time, cross-sectional averaging, and
ensemble averaging. We will use the last one.

For this purpose, all fields in (4.30) and the profile functions are assumed to depend
on an additional parameter µ, e.g. u(x, t) = u(x, t;µ). This parameter describes a
particular realisation of an ensemble E of possible realisations. Mathematically, E is a
Borel set, that is it contains all open sets and is closed under certain basic set operations
(intersection of two sets, union of a countable number of sets, and forming the comple-
ment of a set). We also assume that a probability measure is defined on this ensemble,
that is a function m : E → [0, 1] which satisfies m(∅) = 0, m(E) = 1, monotonicity and
additivity. We will only use the most basic and intuitiv properties of these concepts, so
we will leave it at this superficial account. More details can be found in the book by
Drew and Passman [2], section 9.

The basic average of a quantity f = f(x, t;µ) is then defined via

f̄(x, t) ≡
∫

E

f(x, t;µ)dm(µ). (4.32)

It is straightforward to verify the following rules:

c1f1 + c2f2 = c1f̄1 + c2f̄2, (4.33)

f̄1f2 = f̄1f̄2, (4.34)

∂f

∂t
=
∂f̄

∂t
, (4.35)

∇f = ∇f̄ , (4.36)

where f , f1, f2 are functions of x, t and depend on µ, and c1 and c1 are constants.
Averaging (4.27) and (4.28) and using these rules gives

∇(χkf) = χk∇f + fki∇χk, (4.37)

∂

∂t
(χkf) = χk

∂f

∂t
+ fki

∂χk
∂t

. (4.38)

Taking the average of the entire equation (4.30) and using these rules, we obtain

∂

∂t
χkρψ +∇ · χkρψu = −∇ · χkJ + χkρf + [ρkiψki(uki − ui) + Jki] · ∇χk. (4.39)

Mass balance equation. From this point onwards it is useful to discuss the balance
equations for mass and momentum separately. For mass conservation, we define the
averaged phase volume,density, velocity and mass source at the interface as, respectively,

αk ≡ χk, ρk ≡ χkρ/αk, uk ≡ χkρu/αkρk, Γk ≡ ρki (uki − ui) ·∇χk. (4.40)
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Notice the difference in denominators for ρk and uk, which imply that these two fields
are defined by different types of averages. With these definitions, mass conservation is
obtained by letting ψ = 1, J = 0, f = 0 in (4.39), to get

∂

∂t
(αkρk) +∇ · (αkρkuk) = Γk. (4.41)

The jump condition (4.31) yields a constraint on the averaged mass sources

Γ1 + Γ2 = 0. (4.42)

Momentum balance equation. For momentum conservation, ψ = u, J = pI − τ ,
f = g, thus

∂

∂t
χkρu+∇ · χkρuu = ∇ · χk(−pI + τ ) + χkρg

+ [ρkiuki(uki − ui) + (pkiI − τ ki)] · ∇χk. (4.43)

We first deal with the quadratic inertial term on the left hand side. Since we cannot
replace the average of the quadratic terms by the square of the averages, or similar, we
split u = uk + u

′
k, and then obtain

χkρuu = αkρkukuk + χkρu
′
ku

′
k. (4.44)

The last term is typically interpreted as the averaged Reynolds stress. Inserting this
and rearranging gives

∂

∂t
αkρkuk +∇ · (αkρkukuk) = ∇ · [αk(T k + T ′

k)] + αkρkg +Mk + u
m
kiΓk, (4.45)

where

T k ≡ χk(−pI + τ )/αk = −pkI + τ k, (4.46a)

T ′
k ≡ −αkρku′

ku
′
k/αk, (4.46b)

Mk ≡ (pkiI − τ ki) · ∇χk, (4.46c)

umki ≡ [ρkiuki(uki − ui) · ∇χk]
/

[ρki(uki − ui) · ∇χk] , (4.46d)

pk ≡ χkp/αk, (4.46e)

τ k ≡ χkτ/αk. (4.46f)

We furthermore split Mk into two contributions,

M k = p∗ki∇αk +M
′
k, (4.47a)

M ′
k ≡ (p − p∗ki)∇χk − τk ·∇χk, (4.47b)
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where p∗ki is the interface average of pki, that is, p∗ki|∇αk|2 ≡ pk∇χk ·∇αk. Moreover,
we have used ∇χk = ∇χk = ∇αk. This results in

∂

∂t
αkρkuk +∇ · (αkρkukuk) = −αk∇pk − (pk − p∗ki)∇αk +∇ · (αkτ k)

+∇ ·
(
αkT

′
k

)
+ αkρkg +M

′
k + u

m
kiΓk. (4.48)

Note that as in the 1D derivations, it is often assumed that the bulk and interface
averaged pressure are equal, pk = p∗ki.

The jump conditions yield

um1iΓ1 +M
′
1 + p∗1i∇α1 + u

m
2iΓ2 +M

′
2 + p∗2i∇α2 =Mm, (4.49)

where Mm are the averaged interfacial source terms, that is, the averaged effect of
surface tension.



Appendix A

2D Curvature

Important The normal, n, is defined off surface by enforcing that it is independent of
the direction perpendicular to the surface. As you will determine on the example sheet,
this implies that

∇ · n =
d

dx

( −h′
(1 + h′2)1/2

)

= − h′′

(1 + h′2)3/2
.

Without loss of generality the x coordinate of the point P is zero. Let

• Q be the centre of the best fit circle, of radius a to be determined

• S lie on the circle, and angle ψ from PQ.

• W lie on the curve z = h(x) with the same x coordinate as S

• h0, h
′
0, h

′′

0 respectively denote h(0), h′(0) and h′′(0).

• p,q, s,w denote the position vectors of P,Q, S,W

• n0, t0 denote the unit tangent and unit normal vectors at P .

• a be radius of the best fit circle; thus 1/a is the magnitude of the curvature.

We have

p = (0, h0)

q = p+ an0

s = q+ a(sinψt0 − cosψn0) = (0, h0) + a(1− cosψ)n0 + a sinψt0

We require, for small x, that s,w agree to O(x2) (and hence O(ψ2)). We have

s = (0, h0) + a(1− cosψ)n0 + a sinψt0 = (0, h0) + aψ2n0/2 + aψt0 + . . .

w = (x, h(x)) = (0, h0) + (x, xh′0 + x2h
′′

0/2 + . . .)

Thus we fix the circle radius a so that

x

aψ
(1, h′0 + xh

′′

0/2) =
ψ

2
n0 + t0 =

1

(1 + h
′2
0 )

1/2

(

1− ψ

2
h′0, h

′
0 +

ψ

2

)

,

4–17
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on neglecting higher orders, i.e. terms that would not contribute to the expansion of s
and w up to order O(x2), O(ψ2). Comparing the first coefficient gives

x

aψ
=

1− h′0ψ/2

(1 + h
′2
0 )

1/2
≈ 1

(1 + h
′2
0 )

1/2

(

1 +O(ψ)

)

.

Comparing the second coefficient on use of the above gives

h′0 + ψ/2

(1 + h
′2
0 )

1/2
=

1− h′0ψ/2

(1 + h
′2
0 )

1/2

[

h′0 +
h

′′

0

2

(
x

aψ

)

aψ

]

=
1− h′0ψ/2

(1 + h
′2
0 )

1/2

[

h′0 +
h

′′

0

2

1

(1 + h
′2
0 )

1/2

(
1 +O(ψ)

)
aψ

]

Hence, on neglecting higher orders,

h′0+ψ/2 =

(

1−h′0
ψ

2

)(

h′0+
1

2

aψh
′′

0

(1 + h
′2
0 )

1/2

)

= h′0+
ψ

2

(

−h′2
0 +

ah
′′

0

(1 + h
′2
0 )

1/2

)

+O(ψ2).

Terms at O(ψ0) automatically agree, while the next term, at O(ψ), requires

1 = −h′2
0 +

ah
′′

0

(1 + h
′2
0 )

1/2
,

i.e.
1

a
=

h
′′

0

(1 + h
′2
0 )

3/2
.

Thus the magnitude of the curvature at P is given by

1

a
=

h′′0
(1 + h

′2
0 )

3/2
= −∇ · n0.

More generally, the magnitude of the curvature at the point x is given by

∣
∣
∣
∣

h′′(x)

(1 + h′(x)2)3/2

∣
∣
∣
∣
= |∇ · n|

and the curvature, κ, is defined by

κ = −∇ · n.

Thus the curvature is positive if the centre of curvature lies above the surface and
negative if it is below (with the contrast between above and below determined by the
direction of the unit normal).
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