Topics in fluid mechanics

PROBLEM SHEET 4.

Note: keep an eye out before Christmas in case there are any minor edits to these
questions.

1. Derive a reference state for a dry atmosphere (no condensation) by using the
equation of state

_ pRT
=
the hydrostatic pressure
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and the dry adiabatic temperature equation
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Use the typical values ¢,T/g =~ 29 km, M,c,/R ~ 3.4, to show that the pressure
can be adequately represented by
p = poexp(—z/H),
where here the scale height is defined as

_ RT
" M,g

H ~ 8.4 km.

(A slightly better numerical approximation near the tropopause is obtained if
the scale height is chosen as 7 km.)

2. The mass and momentum equations for atmospheric motion in the rotating
frame of the Earth can be written in the form

pr+ V. [pu] =0,

d R
p[dltl—i—ﬂlxu} = —Vp— pgk,

where (x,y, z) are local Cartesian coordinates at latitude A = ;. What is the
magnitude of 27



Scale the variables by writing

[
r,y~lIl, z~h, wuv~U w~dU, twﬁ,

p~po, T ~7Ty p=pop(z)+ polsing P,

where
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and show that the horizontal components take the form
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and give the definition of the Rossby number €. Show that in a linear approxi-
mation,

f=1+¢epBy,

where
L cot Ag
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and Rg is Earth’s radius.

The dimensionless pressure I1 = p/pg, density p, temperature 7" and potential
temperature 0 in the atmosphere satisfy the relations
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where a = is constant. Assuming that

aCp
H=p+¢e*P, 0=0+¢c%0,
and that ¢ < 1, deduce that p ~ p(z), and thence that
w=0(), pu=-P, pv=P,.

Show also that consistency between the two forms of scaled pressure requires
the definition of the velocity scale to be

4(Q sin \g)?

U= h ,



and determine this value, if [ = 1,500 m, \g = 45°, ¢ = 9.8 m s~2, h = 8 km.

Show that 5
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and by defining a stream function via P = pt) and assuming that  ~ 1, deduce
that © ~ 1., and hence deduce the thermal wind equations:
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. The quasi-geostrophic potential vorticity equation is

d lv%ﬁla <p8¢>]+5%216 (pH)
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where V? = 8(12 + §y2, and p, S and H are functions of z, the first two being

positive. The horizontal material derivative is

d 0 0 0
%—a—i—u%—{—va—y, U——wy, 'U—wx.

In the Eady model of baroclinic instability, solutions to the QGPVE are sought
in a channel 0 <y < 1, 0 < z < 1, with boundary conditions

d
awzz() at z2=0,1, v, =0 at y=0,1,

and it is supposed that p and S are constant, and § = H = 0. Show that a
particular solution is the zonal flow ¢ = —yz, and describe its velocity field.
By considering the thermal wind equations, explain why this is a meaningful
solution.

By writing ¥ = —yz + ¥ and linearising the equations, derive an equation for
W, and show that it has solutions
U = A(2)e*@=) sin nary,
providing
(2 — ) (A" - j24) = 0,
(z—c)A'=A on 2=0,1,
where you should define pu.

Using the fact that zd(x) = 0, show that if 0 < ¢ < 1, the solution can be found
as a Green’s function for the equation A” — pu?A = 0.



Give a criterion for instability, and show that for the normal mode solutions in
which A is analytic,
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and hence show that the zonal flow is unstable if © < p., where

B COthH,
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and calculate this value. Deduce that the flow is unstable for S < S., and
calculate S..

. A basic two fluid model of two-phase flow is given by the equations
(apg)t + (apgv)z =T,

{p(1—a)}e +{p(1 — @)u}, = -T,
pg[vt + 'UUZ] = —Pz — Ma
pilue + Diwu,] = —p, + M,

where « is void fraction, v and v are liquid and gas phase velocities, p is pressure,
and p, and p; are gas and liquid densities; the constant D; > 1 is a profile coeffi-
cient, and I' and M are interfacial source and drag terms, which are prescribed
algebraic functions of the variables.

Explain how to find the characteristics of this system when written in the form
AY, + By, =c.

(i) Assuming p, and p; are constant and p, < p;, show that the characteristics
are generally real.

(i) If
dpg 1 dpr 1
dp 2’ dp e
calculate approximate values of the characteristics if u,v < ¢, ¢, and py, < py,

and comment on the physical significance of these.

. The energy equation for a one-dimensional two-phase flow in a tube is given by
I'L + acyy(Th +vT:) + (1 = a)prep(Ty + uTz) — {(apg)e + (apgv).}

@ =)t + {(1 — )pu}:] = Q,
where
[ = (apg) + (apgv). = =[{(1 = a)pi}e + {(1 — a)pru}.],
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and the temperatures of the two phases are assumed equal, and denoted by T'.

The enthalpy of each phase satisfies dhy = ¢, dT', and is related to the internal

energy e by

Iy = e + 25
Pk

L = hg — Iy is the latent heat. Deduce that the energy equation can be written
in the form

(apgeq) + (apgeqv). + [(1 = a)piegs + [(1 — a)preju]. = Q.
Define the mixture density by

p=p(l—a)+p

the mixture pressure by
p=(1—a)p + apg,

the mixture internal energy by
pe = apgeg + (1 — a)pey,

and the mixture enthalpy by
h=e+

9

.
p
deduce that
ph = apshy, + (1 — a)pihy.
If the flow is homogeneous, deduce that
de
i
pdt Y

d
where — is the material derivative, and if the pressure drop along the tube
Ap < pyL, show that h =~ e, and deduce that

% _ (pl - pg)Q'
0z pgpiL

. An approximate homogeneous two-phase model for density wave oscillations in
a pipe of length [ is given by

Pt T UpPy = —UzP,

4f pru®
d )

p(uy +uu,) = —p, — pg —
,O(ht + Uhl’) = Q7



where () is constant, and
h~h*+ Pl
P
in the two-phase region; h*, L and @) are constants, p, and p; are (constant) gas
and liquid densities, h is enthalpy, and p, p and u are mixture density, pressure
and velocity. For h < hg,y, the saturation enthalpy, only liquid is present, p = py,

and the above relation for h is irrelevant.

Boundary conditions for the flow are that
h=hy<hg,, u=U({t) at z=0,

h=hg on z=r(t),

where the unknown boiling boundary r(¢) is to be determined, and the pressure
drop along the pipe, Ap, is prescribed.

Show that

0= " Us)ds,

-7
and give the definition of 7. Show that the pressure drop in the single phase
region is

Apy, = [Asz + Ap, + Aprﬂr,

where

4flpul
Ap; = pud,  Apy = pgl, Apy = y 0w

\]

Non-dimensionalise the two-phase model by scaling
pr~p, zr~l te~T1 u U~ ug,
and show that the two-phase velocity and density satisfy

Z—7T

—1In t
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where Uy (t) = U(t — 1), and give the definition of . Write down an integral
expression for the two-phase pressure drop in the form

1
Apy, = / (Api®; + Ap,®, + Apsd;] dz,

where the functions ®, depend on uw and p and their derivatives.

If U = V in the steady state, explain why 0 < V' < 1. Write down an expression
for Ap as a function of V. Show that if V' is sufficiently close to one, Ap is an
increasing function of V', but that if ¢ is sufficiently small, it is a decreasing
function of V.



Now suppose that Ap; = Ap, = 0. To examine the stability of the steady state
(denoted by a suffix zero for r, u and p), write

U=V +ov, r=rg+r, u=u+u, p=po+p,

and linearise the equations. Hence derive expressions for r1, u; and p;.

By taking v = e, derive an algebraic equation for ¢ from the condition that
the perturbation to Ap is zero. If only the single phase pressure drop term is
included, show that

0= _%(1 - 6_0)7

and deduce that the steady state is stable.

If only the two-phase pressure drop is included, and ¢ is assumed to be small,

show that
2(1—2V)

1-V 7
and deduce that Reo — oo as 0 — oo € C, and thus that the model is ill-posed.
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If both pressure drops are included (and the two-phase approximation for small
¢ is used), show that
[(l1—e) 4eV3
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and deduce that the model is ill-posed for < 1.

Finally, if the inertial term in the single phase region (only) is included, show

that
2€V2Api

(1 — V)QAp f’
and deduce that the model is well-posed, but the steady state is unstable for
small ¢.

vol +o(d—e )+ (1—-e7)=0 v=



