Topics in fluid mechanics

Problem sheet 4.

Note: keep an eye out before Christmas in case there are any minor edits to these questions.

1. Derive a reference state for a dry atmosphere (no condensation) by using the equation of state

$$
p=\frac{\rho R T}{M_{a}}
$$

the hydrostatic pressure

$$
\frac{\partial p}{\partial z}=-\rho g
$$

and the dry adiabatic temperature equation

$$
\rho c_{p} \frac{d T}{d t}-\frac{d p}{d t}=0 .
$$

Show that

$$
\bar{T}=T_{0}-\frac{g z}{c_{p}}, \quad \bar{p}=p_{0} p^{*}(z)
$$

where

$$
p^{*}(z)=\left(1-\frac{g z}{c_{p} T_{0}}\right)^{M_{a} c_{p} / R}
$$

Use the typical values $c_{p} T_{0} / g \approx 29 \mathrm{~km}, M_{a} c_{p} / R \approx 3.4$, to show that the pressure can be adequately represented by

$$
\bar{p}=p_{0} \exp (-z / H),
$$

where here the scale height is defined as

$$
H=\frac{R T_{0}}{M_{a} g} \approx 8.4 \mathrm{~km}
$$

(A slightly better numerical approximation near the tropopause is obtained if the scale height is chosen as 7 km .)
2. The mass and momentum equations for atmospheric motion in the rotating frame of the Earth can be written in the form

$$
\begin{gathered}
\rho_{t}+\boldsymbol{\nabla} \cdot[\rho \mathbf{u}]=0, \\
\rho\left[\frac{d \mathbf{u}}{d t}+2 \boldsymbol{\Omega} \times \mathbf{u}\right]=-\nabla p-\rho g \hat{\mathbf{k}}
\end{gathered}
$$

where (x, y, z) are local Cartesian coordinates at latitude $\lambda=\lambda_{0}$. What is the magnitude of Ω ?

Scale the variables by writing

$$
\begin{aligned}
x, y & \sim l, \quad z \sim h, \quad u, v \sim U, \quad w \sim \delta U, \quad t \sim \frac{l}{U} \\
\rho & \sim \rho_{0}, \quad T \sim T_{0}, \quad p=p_{0} \bar{p}(z)+\rho_{0} \Omega l \sin \lambda_{0} P
\end{aligned}
$$

where

$$
\delta=\frac{h}{l}, \quad p_{0}=\rho_{0} g h=\frac{\rho_{0} R T_{0}}{M}
$$

and show that the horizontal components take the form

$$
\begin{aligned}
& \varepsilon \frac{d u}{d t}-f v=-\frac{1}{\rho} P_{x} \\
& \varepsilon \frac{d v}{d t}+f u=-\frac{1}{\rho} P_{y}
\end{aligned}
$$

where

$$
f=\frac{\sin \lambda}{\sin \lambda_{0}},
$$

and give the definition of the Rossby number ε. Show that in a linear approximation,

$$
f \approx 1+\varepsilon \beta y,
$$

where

$$
\beta=\frac{l}{R_{E}} \frac{\cot \lambda_{0}}{\varepsilon}=O(1),
$$

and R_{E} is Earth's radius.
The dimensionless pressure $\Pi=p / p_{0}$, density ρ, temperature T and potential temperature θ in the atmosphere satisfy the relations

$$
\rho=\frac{\Pi}{T}, \quad T=\theta \Pi^{\alpha}, \quad-\frac{\partial \Pi}{\partial z}=\rho,
$$

where $\alpha=\frac{R}{M_{a} c_{p}}$ is constant. Assuming that

$$
\Pi=\bar{p}+\varepsilon^{2} P, \quad \theta=\bar{\theta}+\varepsilon^{2} \Theta,
$$

and that $\varepsilon \ll 1$, deduce that $\rho \approx \bar{\rho}(z)$, and thence that

$$
w=O(\varepsilon), \quad \bar{\rho} u \approx-P_{y}, \quad \bar{\rho} v \approx P_{x}
$$

Show also that consistency between the two forms of scaled pressure requires the definition of the velocity scale to be

$$
U=\frac{4\left(\Omega l \sin \lambda_{0}\right)^{3}}{g h},
$$

and determine this value, if $l=1,500 \mathrm{~m}, \lambda_{0}=45^{\circ}, g=9.8 \mathrm{~m} \mathrm{~s}^{-2}, h=8 \mathrm{~km}$.
Show that

$$
\Theta \approx \bar{\theta}^{2} \frac{\partial}{\partial z}\left[\frac{P}{\bar{p}^{1-\alpha}}\right]
$$

and by defining a stream function via $P=\bar{\rho} \psi$ and assuming that $\bar{\theta} \approx 1$, deduce that $\Theta \approx \psi_{z}$, and hence deduce the thermal wind equations:

$$
\frac{\partial u}{\partial z}=-\frac{\partial \Theta}{\partial y}, \quad \frac{\partial v}{\partial z}=\frac{\partial \Theta}{\partial x}
$$

3. The quasi-geostrophic potential vorticity equation is

$$
\frac{d}{d t}\left[\nabla^{2} \psi+\frac{1}{\bar{\rho}} \frac{\partial}{\partial z}\left(\frac{\bar{\rho}}{S} \frac{\partial \psi}{\partial z}\right)\right]+\beta \psi_{x}=\frac{1}{\bar{\rho}} \frac{\partial}{\partial z}\left(\frac{\bar{\rho} H}{S}\right)
$$

where $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$, and $\bar{\rho}, S$ and H are functions of z, the first two being positive. The horizontal material derivative is

$$
\frac{d}{d t}=\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}, \quad u=-\psi_{y}, \quad v=\psi_{x}
$$

In the Eady model of baroclinic instability, solutions to the QGPVE are sought in a channel $0<y<1,0<z<1$, with boundary conditions

$$
\frac{d}{d t} \psi_{z}=0 \quad \text { at } \quad z=0,1, \quad \psi_{x}=0 \quad \text { at } \quad y=0,1
$$

and it is supposed that $\bar{\rho}$ and S are constant, and $\beta=H=0$. Show that a particular solution is the zonal flow $\psi=-y z$, and describe its velocity field. By considering the thermal wind equations, explain why this is a meaningful solution.
By writing $\psi=-y z+\Psi$ and linearising the equations, derive an equation for Ψ, and show that it has solutions

$$
\Psi=A(z) e^{i k(x-c t)} \sin n \pi y
$$

providing

$$
\begin{gathered}
(z-c)\left(A^{\prime \prime}-\mu^{2} A\right)=0 \\
(z-c) A^{\prime}=A \quad \text { on } \quad z=0,1
\end{gathered}
$$

where you should define μ.
Using the fact that $x \delta(x)=0$, show that if $0<c<1$, the solution can be found as a Green's function for the equation $A^{\prime \prime}-\mu^{2} A=0$.

Give a criterion for instability, and show that for the normal mode solutions in which A is analytic,

$$
c=\frac{1}{2} \pm \frac{1}{\mu}\left\{\left(\frac{\mu}{2}-\operatorname{coth} \frac{\mu}{2}\right)\left(\frac{\mu}{2}-\tanh \frac{\mu}{2}\right)\right\}^{1 / 2}
$$

and hence show that the zonal flow is unstable if $\mu<\mu_{c}$, where

$$
\frac{\mu}{2}=\operatorname{coth} \frac{\mu}{2},
$$

and calculate this value. Deduce that the flow is unstable for $S<S_{c}$, and calculate S_{c}.
4. A basic two fluid model of two-phase flow is given by the equations

$$
\begin{gathered}
\left(\alpha \rho_{g}\right)_{t}+\left(\alpha \rho_{g} v\right)_{z}=\Gamma, \\
\left\{\rho_{l}(1-\alpha)\right\}_{t}+\left\{\rho_{l}(1-\alpha) u\right\}_{z}=-\Gamma, \\
\rho_{g}\left[v_{t}+v v_{z}\right]=-p_{z}-M, \\
\rho_{l}\left[u_{t}+D_{l} u u_{z}\right]=-p_{z}+M,
\end{gathered}
$$

where α is void fraction, u and v are liquid and gas phase velocities, p is pressure, and ρ_{g} and ρ_{l} are gas and liquid densities; the constant $D_{l}>1$ is a profile coefficient, and Γ and M are interfacial source and drag terms, which are prescribed algebraic functions of the variables.
Explain how to find the characteristics of this system when written in the form

$$
A \boldsymbol{\psi}_{t}+B \boldsymbol{\psi}_{x}=\mathbf{c}
$$

(i) Assuming ρ_{g} and ρ_{l} are constant and $\rho_{g} \ll \rho_{l}$, show that the characteristics are generally real.
(ii) If

$$
\frac{d \rho_{g}}{d p}=\frac{1}{c_{g}^{2}}, \quad \frac{d \rho_{l}}{d p}=\frac{1}{c_{l}^{2}},
$$

calculate approximate values of the characteristics if $u, v \ll c_{l}, c_{g}$ and $\rho_{g} \ll \rho_{l}$, and comment on the physical significance of these.
5. The energy equation for a one-dimensional two-phase flow in a tube is given by

$$
\begin{aligned}
& \Gamma L+\alpha c_{p g}\left(T_{t}+v T_{z}\right)+(1-\alpha) \rho_{l} c_{p l}\left(T_{t}+u T_{z}\right)-\left\{\left(\alpha p_{g}\right)_{t}+\left(\alpha p_{g} v\right)_{z}\right\} \\
&-\left[\left\{(1-\alpha) p_{l}\right\}_{t}+\left\{(1-\alpha) p_{l} u\right\}_{z}\right]=Q,
\end{aligned}
$$

where

$$
\Gamma=\left(\alpha \rho_{g}\right)_{t}+\left(\alpha \rho_{g} v\right)_{z}=-\left[\left\{(1-\alpha) \rho_{l}\right\}_{t}+\left\{(1-\alpha) \rho_{l} u\right\}_{z}\right],
$$

and the temperatures of the two phases are assumed equal, and denoted by T. The enthalpy of each phase satisfies $d h_{k}=c_{p k} d T$, and is related to the internal energy e_{k} by

$$
h_{k}=e_{k}+\frac{p_{k}}{\rho_{k}} ;
$$

$L=h_{g}-h_{l}$ is the latent heat. Deduce that the energy equation can be written in the form

$$
\left(\alpha \rho_{g} e_{g}\right)_{t}+\left(\alpha \rho_{g} e_{g} v\right)_{z}+\left[(1-\alpha) \rho_{l} e_{l}\right]_{t}+\left[(1-\alpha) \rho_{l} e_{l} u\right]_{z}=Q .
$$

Define the mixture density by

$$
\rho=\rho_{l}(1-\alpha)+\rho_{g} \alpha,
$$

the mixture pressure by

$$
p=(1-\alpha) p_{l}+\alpha p_{g},
$$

the mixture internal energy by

$$
\rho e=\alpha \rho_{g} e_{g}+(1-\alpha) \rho_{l} e_{l},
$$

and the mixture enthalpy by

$$
h=e+\frac{p}{\rho} ;
$$

deduce that

$$
\rho h=\alpha \rho_{g} h_{g}+(1-\alpha) \rho_{l} h_{l} .
$$

If the flow is homogeneous, deduce that

$$
\rho \frac{d e}{d t}=0
$$

where $\frac{d}{d t}$ is the material derivative, and if the pressure drop along the tube $\Delta p \ll \rho_{g} L$, show that $h \approx e$, and deduce that

$$
\frac{\partial u}{\partial z}=\frac{\left(\rho_{l}-\rho_{g}\right) Q}{\rho_{g} \rho_{l} L} .
$$

6. An approximate homogeneous two-phase model for density wave oscillations in a pipe of length l is given by

$$
\begin{gathered}
\rho_{t}+u \rho_{z}=-u_{z} \rho, \\
\rho\left(u_{t}+u u_{z}\right)=-p_{z}-\rho g-\frac{4 f \rho_{l} u^{2}}{d}, \\
\rho\left(h_{t}+u h_{x}\right)=Q,
\end{gathered}
$$

where Q is constant, and

$$
h \approx h^{*}+\frac{\rho_{g} L}{\rho}
$$

in the two-phase region; h^{*}, L and Q are constants, ρ_{g} and ρ_{l} are (constant) gas and liquid densities, h is enthalpy, and ρ, p and u are mixture density, pressure and velocity. For $h<h_{\text {sat }}$, the saturation enthalpy, only liquid is present, $\rho=\rho_{l}$, and the above relation for h is irrelevant.

Boundary conditions for the flow are that

$$
\begin{gathered}
h=h_{0}<h_{\text {sat }}, \quad u=U(t) \quad \text { at } \quad z=0, \\
h=h_{\text {sat }} \quad \text { on } \quad z=r(t),
\end{gathered}
$$

where the unknown boiling boundary $r(t)$ is to be determined, and the pressure drop along the pipe, Δp, is prescribed.
Show that

$$
r(t)=\int_{t-\tau}^{t} U(s) d s
$$

and give the definition of τ. Show that the pressure drop in the single phase region is

$$
\Delta p_{s p}=\left[\Delta p_{i} \dot{U}+\Delta p_{g}+\Delta p_{f} U^{2}\right] r
$$

where

$$
\Delta p_{i}=\rho_{l} u_{0}^{2}, \quad \Delta p_{g}=\rho_{l} g l, \quad \Delta p_{f}=\frac{4 f l \rho_{l} u_{0}^{2}}{d}, \quad u_{0}=\frac{l}{\tau} .
$$

Non-dimensionalise the two-phase model by scaling

$$
\rho \sim \rho_{l}, \quad z, r \sim l, \quad t \sim \tau, \quad u, U \sim u_{0},
$$

and show that the two-phase velocity and density satisfy

$$
u=U+\frac{z-r}{\varepsilon}, \quad z=r+\varepsilon \int_{0}^{-\ln \rho} U_{1}(t-\varepsilon \xi) e^{\xi} d \xi, \quad r=\int_{t-1}^{t} U(s) d s
$$

where $U_{1}(t)=U(t-1)$, and give the definition of ε. Write down an integral expression for the two-phase pressure drop in the form

$$
\Delta p_{t p}=\int_{r}^{1}\left(\Delta p_{i} \Phi_{i}+\Delta p_{g} \Phi_{g}+\Delta p_{f} \Phi_{f}\right] d z
$$

where the functions Φ_{k} depend on u and ρ and their derivatives.
If $U=V$ in the steady state, explain why $0<V<1$. Write down an expression for Δp as a function of V. Show that if V is sufficiently close to one, Δp is an increasing function of V, but that if ε is sufficiently small, it is a decreasing function of V.

Now suppose that $\Delta p_{i}=\Delta p_{g}=0$. To examine the stability of the steady state (denoted by a suffix zero for r, u and ρ), write

$$
U=V+v, \quad r=r_{0}+r_{1}, \quad u=u_{0}+u_{1}, \quad \rho=\rho_{0}+\rho_{1}
$$

and linearise the equations. Hence derive expressions for r_{1}, u_{1} and ρ_{1}.
By taking $v=e^{\sigma t}$, derive an algebraic equation for σ from the condition that the perturbation to Δp is zero. If only the single phase pressure drop term is included, show that

$$
\sigma=-\frac{1}{2}\left(1-e^{-\sigma}\right),
$$

and deduce that the steady state is stable.
If only the two-phase pressure drop is included, and ε is assumed to be small, show that

$$
\sigma=\gamma\left(e^{\sigma}-1\right), \quad \gamma=\frac{2(1-2 V)}{1-V}
$$

and deduce that $\operatorname{Re} \sigma \rightarrow \infty$ as $\sigma \rightarrow \infty \in \mathbf{C}$, and thus that the model is ill-posed. If both pressure drops are included (and the two-phase approximation for small ε is used), show that

$$
\sigma=-\frac{\Gamma\left(1-e^{-\sigma}\right)}{\delta-e^{-\sigma}}, \quad \delta=\frac{4 \varepsilon V^{3}}{(1-V)^{2}}, \quad \Gamma=\gamma+\frac{1}{2} \delta,
$$

and deduce that the model is ill-posed for $\delta<1$.
Finally, if the inertial term in the single phase region (only) is included, show that

$$
\nu \sigma^{2}+\sigma\left(\delta-e^{-\sigma}\right)+\Gamma\left(1-e^{-\sigma}\right)=0, \quad \nu=\frac{2 \varepsilon V^{2} \Delta p_{i}}{(1-V)^{2} \Delta p_{f}},
$$

and deduce that the model is well-posed, but the steady state is unstable for small ε.

