
Topics in fluid mechanics

Problem sheet 4.

1. Derive a reference state for a dry atmosphere (no condensation) by using the
equation of state

p =
ρRT

Ma

,

the hydrostatic pressure
∂p

∂z
= −ρg,

and the dry adiabatic temperature equation

ρcp
dT

dt
−
dp

dt
= 0.

Show that
T̄ = T0 −

gz

cp
, p̄ = p0p

∗(z),

where

p∗(z) =

(

1−
gz

cpT0

)Macp/R

.

Use the typical values cpT0/g ≈ 29 km,Macp/R ≈ 3.4, to show that the pressure
can be adequately represented by

p̄ = p0 exp(−z/H),

where here the scale height is defined as

H =
RT0
Mag

≈ 8.4 km.

(A slightly better numerical approximation near the tropopause is obtained if
the scale height is chosen as 7 km.)

2. The mass and momentum equations for atmospheric motion in the rotating
frame of the Earth can be written in the form

ρt +∇. [ρu] = 0,

ρ

[

du

dt
+ 2Ω× u

]

= −∇p− ρgk̂,

where (x, y, z) are local Cartesian coordinates at latitude λ = λ0. What is the
magnitude of Ω?

Scale the variables by writing

x, y ∼ l, z ∼ h, u, v ∼ U, w ∼ δU, t ∼
l

U
,
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ρ ∼ ρ0, T ∼ T0, p = p0p̄(z) + 2ρ0ΩUl sinλ0 P,

where

δ =
h

l
, p0 = ρ0gh =

ρ0RT0
M

,

and show that the horizontal components take the form

ε
du

dt
− fv = −

1

ρ
Px,

ε
dv

dt
+ fu = −

1

ρ
Py,

where

f =
sinλ

sinλ0
,

and give the definition of the Rossby number ε. Show that in a linear approxi-
mation,

f ≈ 1 + εβy,

where

β =
l

RE

cotλ0
ε

= O(1),

and RE is Earth’s radius.

The dimensionless pressure Π = p/p0, density ρ, temperature T and potential
temperature θ in the atmosphere satisfy the relations

ρ =
Π

T
, T = θΠα, −

∂Π

∂z
= ρ,

where α =
R

Macp
is constant. Assuming that

Π = p̄+ ε2P, θ = θ̄ + ε2Θ,

and that ε≪ 1, deduce that ρ ≈ ρ̄(z), and thence that

w = O(ε), ρ̄u ≈ −Py, ρ̄v ≈ Px.

Show also that consistency between the two forms of scaled pressure requires
the definition of the velocity scale to be

U =
8(Ωl sinλ0)

3

gh
,

and determine this value, if l = 1,000 km, λ0 = 45◦, g = 9.8 m s−2, h = 8 km.

Show that

Θ ≈ θ̄2
∂

∂z

[

P

p̄1−α

]

,
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and by defining a stream function via P = ρ̄ψ and assuming that θ̄ ≈ 1, deduce
that Θ ≈ ψz, and hence deduce the thermal wind equations:

∂u

∂z
= −

∂Θ

∂y
,

∂v

∂z
=
∂Θ

∂x
.

3. The quasi-geostrophic potential vorticity equation is

d

dt

[

∇2ψ +
1

ρ̄

∂

∂z

(

ρ̄

S

∂ψ

∂z

)]

+ βψx =
1

ρ̄

∂

∂z

(

ρ̄H

S

)

,

where ∇2 =
∂2

∂x2
+

∂2

∂y2
, and ρ̄, S and H are functions of z, the first two being

positive. The horizontal material derivative is

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
, u = −ψy, v = ψx.

In the Eady model of baroclinic instability, solutions to the QGPVE are sought
in a channel 0 < y < 1, 0 < z < 1, with boundary conditions

d

dt
ψz = 0 at z = 0, 1, ψx = 0 at y = 0, 1,

and it is supposed that ρ̄ and S are constant, and β = H = 0. Show that a
particular solution is the zonal flow ψ = −yz, and describe its velocity field.
By considering the thermal wind equations, explain why this is a meaningful
solution.

By writing ψ = −yz + Ψ and linearising the equations, derive an equation for
Ψ, and show that it has solutions

Ψ = A(z)eik(x−ct) sinnπy,

providing
(z − c)(A′′ − µ2A) = 0,

(z − c)A′ = A on z = 0, 1,

where you should define µ.

Using the fact that xδ(x) = 0, show that if 0 < c < 1, the solution can be found
as a Green’s function for the equation A′′ − µ2A = 0.

Give a criterion for instability, and show that for the normal mode solutions in
which A is analytic,

c =
1

2
±

1

µ

{(

µ

2
− coth

µ

2

)(

µ

2
− tanh

µ

2

)}1/2

,

and hence show that the zonal flow is unstable if µ < µc, where

µ

2
= coth

µ

2
,

and calculate this value. Deduce that the flow is unstable for S < Sc, and
calculate Sc.
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4. A basic two fluid model of two-phase flow is given by the equations

(αρg)t + (αρgv)z = Γ,

{ρl(1− α)}t + {ρl(1− α)u}z = −Γ,

ρg[vt + vvz] = −pz −M,

ρl[ut +Dluuz] = −pz +M,

where α is void fraction, u and v are liquid and gas phase velocities, p is pressure,
and ρg and ρl are gas and liquid densities; the constant Dl > 1 is a profile coeffi-
cient, and Γ and M are interfacial source and drag terms, which are prescribed
algebraic functions of the variables.

Explain how to find the characteristics of this system when written in the form

Aψt + Bψz = c.

(i) Assuming ρg and ρl are constant and ρg ≪ ρl, show that the characteristics
are generally real.

(ii) If
dρg
dp

=
1

c2g
,

dρl
dp

=
1

c2l
,

calculate approximate values of the characteristics if u ∼ v ≪ cl ∼ cg and
ρg ≪ ρl, and comment on the physical significance of these.

5. The energy equation for a one-dimensional two-phase flow in a tube is given by

ΓL+ αρgcpg(Tt + vTz) + (1− α)ρlcpl(Tt + uTz)− {(αpg)t + (αpgv)z}

−[{(1− α)pl}t + {(1− α)plu}z] = Q,

where
Γ = (αρg)t + (αρgv)z = −[{(1− α)ρl}t + {(1− α)ρlu}z],

and the temperatures of the two phases are assumed equal, and denoted by T .

The enthalpy of each phase satisfies dhk = cpk dT , and is related to the internal
energy ek by

hk = ek +
pk
ρk

;

L = hg − hl is the latent heat. Deduce that the energy equation can be written
in the form

(αρgeg)t + (αρgegv)z + [(1− α)ρlel]t + [(1− α)ρlelu]z = Q.

Define the mixture density by

ρ = ρl(1− α) + ρgα,
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the mixture pressure by
p = (1− α)pl + αpg,

the mixture internal energy by

ρe = αρgeg + (1− α)ρlel,

and the mixture enthalpy by

h = e+
p

ρ
;

deduce that
ρh = αρghg + (1− α)ρlhl.

If the flow is homogeneous, deduce that

ρ
de

dt
= 0,

where
d

dt
is the material derivative, and if the pressure drop along the tube

∆p≪ ρgL, show that h ≈ e, and deduce that

∂u

∂z
=

(ρl − ρg)Q

ρgρlL
.

6. An approximate homogeneous two-phase model for density wave oscillations in
a pipe of length l is given by

ρt + uρz = −uzρ,

ρ(ut + uuz) = −pz − ρg −
4fρu2

d
,

ρ(ht + uhx) = Q,

where Q is constant, and

h ≈ h∗ +
ρgL

ρ

in the two-phase region; h∗, L and Q are constants, ρg and ρl are (constant) gas
and liquid densities, h is enthalpy, and ρ, p and u are mixture density, pressure
and velocity. For h < hsat, the saturation enthalpy, only liquid is present, ρ = ρl,
and the above relation for h is irrelevant.

Boundary conditions for the flow are that

h = h0 < hsat, u = U(t) at z = 0,

h = hsat on z = r(t),

where the unknown boiling boundary r(t) is to be determined, and the pressure
drop along the pipe, ∆p, is prescribed.
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Show that

r(t) =
∫ t

t−τ
U(s) ds,

and give the definition of τ .

Non-dimensionalise the two-phase model by scaling

ρ ∼ ρl, z, r ∼ l, t ∼ τ, u, U ∼ u0,

and show that the two-phase velocity and density satisfy

u = U +
z − r

ε
, z = r + ε

∫

− ln ρ

0
U1(t− εξ)eξ dξ, r =

∫ t

t−1
U(s) ds,

where U1(t) = U(t− 1), and give the definition of ε.

Show that the pressure drop in the single phase region is

∆psp = [∆piU̇ +∆pg +∆pfU
2]r,

where

∆pi = ρlu
2
0, ∆pg = ρlgl, ∆pf =

4flρlu
2
0

d
, u0 =

l

τ
.

Write down an integral expression for the two-phase pressure drop in the form

∆ptp =
∫ 1

r
(∆piΦi +∆pgΦg +∆pfΦf ] dz,

where the functions Φk depend on u and ρ and their derivatives.

If U = V in the steady state, explain why 0 < V < 1. Write down an expression
for ∆p as a function of V . Show that if V is sufficiently close to one, ∆p is an
increasing function of V , but that if ε is sufficiently small, it is a decreasing
function of V .

Now suppose that ∆pi = ∆pg = 0. To examine the stability of the steady state
(denoted by a suffix zero for r, u and ρ), write

U = V + v, r = r0 + r1, u = u0 + u1, ρ = ρ0 + ρ1,

and linearise the equations. Hence derive expressions for r1, u1 and ρ1.

By taking v = eσt, derive an algebraic equation for σ from the condition that
the perturbation to ∆p is zero. If only the single phase pressure drop term is
included, show that

σ = −1
2
(1− e−σ),

and deduce that the steady state is stable.

If only the two-phase pressure drop is included, and ε is assumed to be small,
show that

σ = γ(eσ − 1), γ =
2V

1− V
,
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and deduce that Reσ → ∞ as σ → ∞ ∈ C, and thus that the model is ill-posed.

If both pressure drops are included (and the two-phase approximation for small
ε is used), show that

σ =
γ(1− e−σ)

δ + e−σ
, δ =

4εV 2

(1− V )2
,

and deduce that the model is ill-posed for δ < 1.

Finally, if the inertial term in the single phase region (only) is included, show
that

νσ2 + σ(δ + e−σ)− γ(1− e−σ) = 0, ν =
2ε∆pi

(1− V )2∆pf
,

and deduce that the model is well-posed, but the steady state is unstable for
small ε.
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