Topics in fluid mechanics

PROBLEM SHEET 4.

1. Derive a reference state for a dry atmosphere (no condensation) by using the
equation of state
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Use the typical values ¢,Tp/g =~ 29 km, M,c,/R ~ 3.4, to show that the pressure
can be adequately represented by

P =poexp(—z/H),
where here the scale height is defined as

_ RT,
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~ &4 km.

(A slightly better numerical approximation near the tropopause is obtained if
the scale height is chosen as 7 km.)

2. The mass and momentum equations for atmospheric motion in the rotating
frame of the Earth can be written in the form

pe+ V. [pu] =0,
p [Cfl‘;—FQQ X u] = —Vp—pgf{,

where (x,y, z) are local Cartesian coordinates at latitude A = \y. What is the
magnitude of Q7

Scale the variables by writing

[

r,y~Il, z~h, uv~U w~doU, twﬁ,



p~po, T~Ty p=pop(z)+2pQUlsin\g P,

where
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and show that the horizontal components take the form
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and give the definition of the Rossby number €. Show that in a linear approxi-
mation,
f~=1+¢epy,

where
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and Rg is Earth’s radius.

The dimensionless pressure II = p/py, density p, temperature 7" and potential
temperature 0 in the atmosphere satisfy the relations
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where o = is constant. Assuming that

aCp
N=p+¢e*P, 0=0+¢e%0,
and that ¢ < 1, deduce that p ~ p(z), and thence that
w=0(), pu=—-P, pv=P,.

Show also that consistency between the two forms of scaled pressure requires
the definition of the velocity scale to be
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and determine this value, if [ = 1,000 km, \g = 45°, ¢ = 9.8 m s 2, h = 8 km.
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and by defining a stream function via P = pi) and assuming that  ~ 1, deduce
that © ~ 1., and hence deduce the thermal wind equations:
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. The quasi-geostrophic potential vorticity equation is
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where V? = 922 + 87;2’ and p, S and H are functions of z, the first two being

positive. The horizontal material derivative is
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In the Eady model of baroclinic instability, solutions to the QGPVE are sought

in a channel 0 <y < 1, 0 < z < 1, with boundary conditions

d

%wz:() at 2=0,1, v, =0 at y=0,1,
and it is supposed that p and S are constant, and § = H = 0. Show that a
particular solution is the zonal flow ¢ = —yz, and describe its velocity field.

By considering the thermal wind equations, explain why this is a meaningful
solution.

By writing ¥ = —yz + ¥ and linearising the equations, derive an equation for
¥, and show that it has solutions

T = A(2)e* @ sin nry,
providing
(2 — ) (A" — p*A) =0,
(z—c)A'=A on z=0,1,
where you should define p.

Using the fact that zd(x) = 0, show that if 0 < ¢ < 1, the solution can be found
as a Green’s function for the equation A” — pu?A = 0.

Give a criterion for instability, and show that for the normal mode solutions in
which A is analytic,
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and hence show that the zonal flow is unstable if @ < p., where
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and calculate this value. Deduce that the flow is unstable for S < S., and
calculate S..



4. A basic two fluid model of two-phase flow is given by the equations
(apg)e + (apgv). =T,

{pl-—a)}y +{p(l — @)u}, =T,
pglve +vv:] = —p. — M,
pilus + Dywu,] = —p, + M,

where « is void fraction, v and v are liquid and gas phase velocities, p is pressure,
and p, and p; are gas and liquid densities; the constant D; > 1 is a profile coeffi-
cient, and I' and M are interfacial source and drag terms, which are prescribed
algebraic functions of the variables.

Explain how to find the characteristics of this system when written in the form

Asp, + Bap, = c.

(i) Assuming p, and p; are constant and p, < p;, show that the characteristics
are generally real.

(ii) If
doy _ 1 dpi_ 1

dp ¢z’ dp o
calculate approximate values of the characteristics if © ~ v < ¢ ~ ¢, and
pg < pi, and comment on the physical significance of these.
5. The energy equation for a one-dimensional two-phase flow in a tube is given by

UL+ apycpg(Ty +0T2) 4 (1 = @) prcp(T; 4 uTz) — {(apy): + (apgv).}

—{@ —a)pi}e +{(1 — a)pu}.] = Q,
where
I = (apg)e + (apgv): = =[{(1 =)o} +{(1 — @) pru}-],
and the temperatures of the two phases are assumed equal, and denoted by T'.

The enthalpy of each phase satisfies dhy = ¢, dT', and is related to the internal
energy e by
hy = ey + @;
Pk
L = hy — Iy is the latent heat. Deduce that the energy equation can be written

in the form
(pgeq): + (apgeqv): + [(1 = a)pers + [(1 — a)peul. = Q.
Define the mixture density by
p=p(l—a)+pa,
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the mixture pressure by
p=(1—a)p+ apy,

the mixture internal energy by

pe = apgey + (1 —a)per,

and the mixture enthalpy by
h=e+=;
p
deduce that

ph = apghg + (1 — a)pihu.
If the flow is homogeneous, deduce that
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where — is the material derivative, and if the pressure drop along the tube
Ap < pgL, show that h =~ e, and deduce that

@ _ (pl - pg)Q
0z pgp1L .

. An approximate homogeneous two-phase model for density wave oscillations in
a pipe of length [ is given by

P tup, = —uzp,

4fpu?
d )

pluy +uu,) = —p, — pg —

p(hy + uh,) = Q,

where () is constant, and
poL

P
in the two-phase region; h*, L and () are constants, p, and p; are (constant) gas
and liquid densities, h is enthalpy, and p, p and u are mixture density, pressure
and velocity. For h < hg,y, the saturation enthalpy, only liquid is present, p = py,
and the above relation for A is irrelevant.

h~h"+

Boundary conditions for the flow are that
h=hy<hg, u=U({) at z=0,

h=hg on z=r(t),

where the unknown boiling boundary r(¢) is to be determined, and the pressure
drop along the pipe, Ap, is prescribed.
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Show that

0= [ " Us) ds,

and give the definition of 7.

Non-dimensionalise the two-phase model by scaling
pr~p, zr~l, t~1  u U~ ug,
and show that the two-phase velocity and density satisfy

Z—7T

—1In t
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where Uy (t) = U(t — 1), and give the definition of .

Show that the pressure drop in the single phase region is
Aps, = [Ap;U + Ap, + Ap;U?)r,

where

Ap; = pug, Apy = pgl, Apy=—"—"-"L wuy=

Write down an integral expression for the two-phase pressure drop in the form
1
Apy, = / (Ap;®; + Ap, @, + Aps®y] dz,

where the functions ®; depend on u and p and their derivatives.

If U = V in the steady state, explain why 0 < V' < 1. Write down an expression
for Ap as a function of V. Show that if V' is sufficiently close to one, Ap is an
increasing function of V', but that if ¢ is sufficiently small, it is a decreasing
function of V.

Now suppose that Ap; = Ap, = 0. To examine the stability of the steady state
(denoted by a suffix zero for r, u and p), write

U=V +wv, r=ro+r, u=ug+uy, p=po+p,

and linearise the equations. Hence derive expressions for 1, u; and p;.

By taking v = €%, derive an algebraic equation for o from the condition that
the perturbation to Ap is zero. If only the single phase pressure drop term is
included, show that

c=—3(1—-e),

and deduce that the steady state is stable.

If only the two-phase pressure drop is included, and ¢ is assumed to be small,

show that
2V



and deduce that Reo — oo as 0 — oo € C, and thus that the model is ill-posed.

If both pressure drops are included (and the two-phase approximation for small
¢ is used), show that

(1 —e79) B 4eV/?

d4+e (1-V)%

and deduce that the model is ill-posed for ¢ < 1.

Finally, if the inertial term in the single phase region (only) is included, show

that
2eAp;

(1—V)*Apy’
and deduce that the model is well-posed, but the steady state is unstable for
small e.

vol+o(0+e ) —y(l—e?)=0, v=



