$C5.5$ **Perturbation Methods**

In addition to convergence, truncated expansions give good

For $\mathcal{E} = 0.1$ and the positive root

 $\begin{array}{l} 1^{st}$ term] exact root
2nd term is
3nd term 0.95124922... 1 $x \nightharpoonup$ 0.95 0.95125 0.951249

Solved, then approach method usually we approximate, then 2
solve
\n2.1 Headic method
$$
x^2 + ex - 1 = 0
$$

\nFor positive root $x = \sqrt{1 - ex}$ by rearrangement.
\nConsider iteration $2n+1 = 9e^{(x)} = \sqrt{1 - ex}$
\nNote, if x^* is a root, so that $xx = 9e^{(x)} + 1$ then if
\n $ax_n - x^*$ is small,
\n $2n+1 - x^* = 9e^{(x)} - x^* = 9e^{(x^* + (x_n - x^*)) - x^*}$
\n $= (9e^{(x^*) - x^*}) + (x_n - x^*)9e^{(x^* + 1)}$
\nAlso $9e^{(x^*)} = \frac{-E_h}{\sqrt{1 - x^*}} = E_h \therefore |x_{n+1} - x^*| \le |x_n|$

Hence iteration converges.
\nBeginning with
$$
x_0 = 1
$$
, $x_1 = \sqrt{1-\epsilon} = 1-\epsilon_1 - \epsilon_2 - \epsilon_3 = \epsilon_1 + \epsilon_3$
\n
$$
x_2 = \sqrt{1-\epsilon(1-\epsilon_2 + \dots)} = \frac{\epsilon_2}{8} \left(1-\epsilon_1 + \dots\right)^2 - \frac{\epsilon_3}{16} \left(1-\epsilon_2 + \dots\right)
$$
\n
$$
= 1 - \frac{\epsilon_1}{2} \left(1-\epsilon_1 + \dots\right) = \frac{\epsilon_2}{8} \left(1-\epsilon_1 + \dots\right)^2 - \frac{\epsilon_3}{16} \left(1-\epsilon_2 + \dots\right)
$$

At each iteration, more terms correct, but more work required
If solution not known, can only conflom terms are correct
by performing a further iteration and checking they do not change

For fast convergence, ideally want $g_{\epsilon}(x)$ such that $g_{\epsilon}(x) \rightarrow 0$
as $\epsilon \rightarrow 0$. 22 Expansion Method (Much more common) For $\epsilon = 0$, $x = \pm 1$.
Bositive root het $x = 1 + \epsilon x_1 + \epsilon^2 x_2 + ...$ $(1+2x_1+2^2x_2+...)^2+2(1+2x_1+2^2x_2+...)-1=0$ $\int \frac{1}{2}$ Tem involving 20 coefficients of powers of $1 - 1 = 0$ E to zero for each \therefore $x_1 = -1/2$ $2x_1 + 1 = 0$ power ... ϵ^1 this is $2x_2 + x_1^2 + x_1 = 0$: $x_2 = 1/8$ etc. to \mathcal{E}^2 f or all Sufficinte sviall E. Caveat Must know fassume form of expansion 2.3 Singular Perturbations $ex^2 + x - 1 = 0$ $|\epsilon| \ll 1$ $E=0$, one root $x=1$. $E\neq0$ two roots. Singular ... the case with $E=0$ differs in an important way Non-sinqular problems are regular

Solve	$x = \frac{1}{2E} \left[-1 \pm \sqrt{1 + 4E} \right]$	(4)
$= \frac{1}{2E} \left[-1 \pm \sqrt{1 + 4E} \right]$	For $ 4E < $	
$\left[-\frac{1}{2} - 1 + E - 2E^2 + \dots \right]$ by binomial expansion the graph of the graph is $E \Rightarrow 0$.		
$\frac{1}{2} \left[-1 + E^2 - 2E^2 + \dots \right]$	For $ 4E < $	
$\frac{1}{2} \left[-1 + E^2 - 2E^2 + \dots \right]$	For $ 4E < $	
$\frac{1}{2} \left[-1 + E^2 - 2E^2 + \dots \right]$	For $ 4E < $	
$\frac{1}{2} \left[-1 + E^2 - 2E^2 + \dots \right]$	For $ 4E < $	
$\frac{1}{2} \left[-1 + E^2 - 2E^2 + \dots \right]$	For $ 4E < $	
$\frac{1}{2} \left[-1 + E^2 - 2E^2 + \dots \right]$	For $ 4E < $	
$\frac{1}{2} \left[-1 + E^2 - 2E^2 + \dots \right]$	For $ 4E < $	
$\frac{1}{2} \left[-1 + E^2 - 2E^2 + \dots \right]$	For $ 4E < $	
$\frac{1}{2} \left[-1 + E^2 - 2E^2 + \dots \right]$	For $ 4E < $	
$\frac{1}{2} \left[-1 + E^2 - 2E^2 + \dots \right]$ </td		

and the fend Expansion method (2nd root) te zero as $\Sigma\neg$ o.

Let
$$
x = x_{-1} + x_0 + 2x_1 + 2^2x_2 + \dots
$$
 and consider
 $2x^2 + x - 1 = 0$

Rescaling
Let $x = X_g \Rightarrow X^2 + X - \epsilon = 0$, regular. Finding correct starting point for expansion same as finding a
record in that makes problem regular.

Alternative approach: Pairwise comparison

$$
\begin{array}{lll}\n\textcircled{1} & \sim \textcircled{2} & \approx \textcircled{3}^2 \sim \textcircled{1} & \textcircled{1} \cdot \textcircled{2} \cdot \textcircled{3} & \textcircled{3} \cdot \textcircled{3} \\
\textcircled{2} & \sim \textcircled{3} & \approx \textcircled{3}^2 \sim 1 & \textcircled{1} \cdot \textcircled{1} & \textcircled{3} \\
\textcircled{3} & \sim \textcircled{1} & \textcircled{3} & \textcircled{4} & \textcircled{5} \\
\textcircled{4} & \sim \textcircled{3} & \textcircled{5} \sim 1 & \textcircled{2} \cdot \textcircled{3} & \textcircled{3} & \textcircled{1} & \textcircled{3} & \textcircled{4} \\
\textcircled{5} & \sim 1 & \textcircled{2} \cdot \textcircled{3} & \textcircled{3} & \textcircled{1} & \textcircled{3} & \textcircled{4} & \textcircled{5} \\
\textcircled{6} & \sim \textcircled{3} & \textcircled{5} & \textcircled{6} & \textcircled{7} & \textcircled{7} & \textcircled{8} & \textcircled{9} & \textcircled{1} & \
$$

25 Non-integer powers
\n
$$
(1-2)x^{2}-2x+1=0
$$
 $|\epsilon| \ll 1$
\n
$$
x = \frac{1 \pm \sqrt{\epsilon}}{1-\epsilon} = 1 \pm \sqrt{\epsilon} + \epsilon \pm \frac{3}{2}\epsilon + ...
$$
\nWith $\epsilon = 0$ $(x-1)^{2} = 0$ \therefore $x = 1$.
\n
$$
x = 1+\epsilon x_{1}+\epsilon^{2}x_{2}+...
$$
\n
$$
x = 1+2\epsilon x_{1}-2\epsilon = 0
$$
\n
$$
x = 1+\epsilon x_{1}+2\epsilon x_{1}-2\epsilon = 0
$$
\n
$$
x = 1+\epsilon x_{1}+2\epsilon x_{1}+2\epsilon x_{1}+\epsilon x_{2}+...
$$
\n
$$
x = 1+\epsilon^{1/2}x_{1/2}+ \epsilon x_{1}+\epsilon^{3/2}x_{2/2}+...
$$
\n
$$
x = 1+\epsilon^{1/2}x_{1/2}+ \epsilon x_{1}+\epsilon^{3/2}x_{2/2}+...
$$
\n
$$
x = 1+\epsilon^{1/2}x_{1/2}+ \epsilon x_{1}+\epsilon^{3/2}x_{2}+...
$$
\n
$$
x = 1+\epsilon^{2}x_{1/2}+1+\epsilon^{2}x_{2}+...
$$
\n
$$
x = 1+\epsilon x_{1/2}+1+\epsilon^{2}x_{2}+...
$$
\n
$$
x = 1+\epsilon x_{1/2}+1+\epsilon^{2
$$

etc.

6

2.6 Finding the cerrect expansion sequence \bigcirc where $\delta_1(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$ Let $x=1+\delta_1(\epsilon)x_1$ with x_1 strictly arder one. $\begin{array}{c} \n\sqrt{2} \\
\text{Total} \\
\text{E} = 0\n\end{array}$ Prior to further expansion, x_1 retains an ε dependence; don't expand yet to keep working relatively simple $(1-\varepsilon)(1+\delta_1\infty_1)^2-2(1+\delta_1\infty_1)+1=0$ $x+25x^2-8(1+26x+6^2x^2)-2-25x+1=0$ $6^{2}_{1}x^{2}_{1} - 8 - 286_{1}x_{1} - 86^{2}_{1}x^{2}_{1} = 0$ (1) (2) (3) (4) Seek dominant balance (4) « 1) always (3) « 2) always \therefore 403 not in dorinant balance \therefore $\mathbb{O}\sim\mathbb{O}$ \therefore $\mathbb{E}\sim\delta_1^2$ \therefore Let $\delta_1 = \sqrt{\mathcal{E}}$ further expansion here; now x_2 independent of ε as there are further terms $\therefore \quad x = 1 + \varepsilon^{\frac{n_2}{2}} x_1 + \delta_2(\varepsilon) x_2 + \cdots$ From (*) we get at $o(\varepsilon)$ with $\delta_2(\epsilon) \ll \delta_1 = \epsilon^{1/2}$ $\frac{}{} \mathcal{L}_1^2 - 1 = 0$: $\frac{1}{\mathcal{L}_1} = \pm 1$ With $x \ge 1 + \epsilon^{v_2}$ $x = 1 + \varepsilon^{v_2} + \delta_2(\varepsilon) x_2 + \cdots$ $(1-\epsilon)(1+\epsilon^{1/2}+\delta_2x_1)^2-2(1+\epsilon^{1/2}+\delta_2x_1)+1=0$ (Lots of algebra.

1 retaining all $2\epsilon^{1/2}\delta_2 x_2 + \delta_2^2 x_2 - 2\epsilon^{3/2} - \epsilon^2 - 2\epsilon \delta_2 x_2$ (b)
 $-2\epsilon^{3/2}\delta_2 x_2 - \epsilon \delta_2 x_2$ Want tenus, but only know 6248 dorisont In vorder one

: 2 not in dominant balance For a large $|0\rangle$ is $|2|$ $x \sim log \frac{1}{\epsilon}$ as $\xi \rightarrow 0^{+}$.

$$
Suggests \qquad \qquad \mathfrak{X}_{n+1} = g_{\mathcal{E}}(\mathfrak{X}_n) = log(\mathfrak{X}_n) + log(\frac{1}{\mathcal{E}})
$$

Note
$$
g'_\mathcal{E}(x_\mathcal{I}) = 1/x
$$

\n $\sim \frac{1}{\log(\frac{x}{\epsilon})}$ $\rightarrow 0$ as $\epsilon \rightarrow 0^+$ $\begin{bmatrix} \frac{b_{\text{rot}}}{\text{slow}} \\ \frac{d_{\text{low}}}{\text{convergenc}} \end{bmatrix}$