
Perturbation Methods: Problem Sheet 1

Q1 (a) Write down the condition for {an(ε)}n∈N0 to be an asymptotic sequence as ε→ 0.

(b) Write down the condition for
∑∞

n=0 an(ε) to be an asymptotic expansion of a function f(ε) as
ε→ 0.

(c) Find an(ε) when f(ε) = log(1− log ε) for ε > 0.

(d) Find the functional dependence of an(ε) on ε when f(ε) = exp
(
−1/(ε2 + ε3)

)
for ε > 0.

Q2 (a) Find the first three terms in the asymptotic expansions as ε→ 0 of the roots of x3 + x− ε = 0
using both iterative and expansion methods.

(b) By rescaling x or otherwise, find the first three terms in the asymptotic expansions as ε → 0
of the roots of ε3x2 + εx+ 1 = 0. When do these expansions converge?

(c) Optional By rescaling x or otherwise, find the first two terms in the asymptotic expansions as
ε→ 0 of the roots of ε2x3 + x2 + 2x+ ε = 0.

Q3 (a) Find the first term in the asymptotic expansions as ε→ 0 of the roots of (i) x3 + ε(ax+ b) = 0
and (ii) εx3 + ax+ b = 0, where a, b = O(1) as ε→ 0.

(b) Find the first two terms in the asymptotic expansion of x(ε) as ε → 0, where x(ε) is the real
solution nearest 0 of

√
2 sin

(
x+

π

4

)
− 1− x+

x2

2
= − ε

6
.

(c) Show that {log(1/ε), log(log(1/ε)), log(log(log(1/ε))), . . . } forms an asymptotic sequence as
ε → 0+. Find the first three terms in the asymptotic expansion as ε → 0+ of the solution of
x = ε log(1/x).
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Q1 Let α be a real constant and β a positive constant with α 6= β − 1. Derive the first term in the
asymptotic expansion of

∫∞
x tαe−t

β
dt as x→∞.

Q2 Derive the first two terms in the asymptotic expansion of
∫ x

0 e
t3 dt as x→∞.

Q3 Use Laplace’s method to derive the leading-order asymptotic behaviour as x→∞ of the integrals

I1(x) =

∫ π/2

−π/2
e−x(t2−sin2 t) dt, I2(x) =

∫ ∞
0

e−2t−x/t2 dt.

[You may assume that
∫∞

0 e−t
n

dt = Γ(1/n)/n for n ∈ {2, 4} and Γ(1/2) =
√
π.]

Q4 Use the method of stationary phase to derive the leading-order asymptotic behaviour as x→∞ of
the integrals

J1(x) =

∫ 1

0
cos(xt4) tan(t) dt,

Optional J2(x) =

∫ 1

0
exp[ix(t− sin t)] dt.

[You may assume that
∫∞

0 eit
3

dt = eiπ/6Γ(1/3)/3 and
∫∞

0 teit
4

dt = eiπ/4Γ(1/2)/4.]

Q5 In this problem, you will use the method of steepest descents to derive the leading-order asymptotic
behaviour as x→∞ of the integral

I(x) =

∫ 1

−1
(1− t2)Neixt dt,

where N is an integer and the contour of integration is a line segment from t = −1 to t = 1.

(a) Find and sketch in the complex t-plane the steepest descent contours through t = ±1.

(b) By deforming the contour of integration to a new contour that goes through both steepest
descent contours, show that I(x) = I−(x)− I+(x), where

I±(x) =

∫ ±1+i∞

±1
(1− t2)Neixt dt.

(c) Use Laplace’s method to derive the leading-order asymptotic behaviour as x → ∞ of the
integrals I±(x), and hence of I(x).

[You may assume that Γ(m+ 1) =
∫∞

0 tme−t dt = m! for integer m.]

Q6 Consider the error function

erf(z) =
2√
π

∫ z

0
e−s

2
ds =

2r√
π

∫ eiθ

0
e−r

2t2 dt,

where we have substituted z = reiθ and s = rt. Use the method of steepest descents to derive
the leading-order asymptotic behaviour of erf(z) as r = |z| → ∞ for 0 < θ < π/2, distinguishing
carefully between the cases 0 < θ ≤ π/4 and π/4 < θ < π/2.



Perturbation Methods: Problem Sheet 3

Q1 State which method or methods could be used to find the asymptotic behaviour of the following
integrals in which x is real:∫ π/2

0
eix cos tdt,

∫ 1

0
ln t eixtdt,

∫ x

0
t−1/2e−tdt,

∫ π/2

0
e−x sin2 tdt,

∫ 1

0
exp

(
ixe−1/t

)
dt as x→∞;

∫ 10

0

e−xt

1 + t
dt,

∫ π/2

0

dt√
cos2 t+ x sin2 t

,

∫ 1

0

sin(tx)

t
dt,

∫ 1

0

ln t

x+ t
dt as x→ 0+.

You need not evaluate the asymptotic expansions.

Q2 (a) Write out in words Van Dyke’s matching rule “(m.t.i.)(n.t.o.) = (n.t.o.)(m.t.i.)”.

(b) Find and match for (m,n) = (1, 1), (1, 2), (2, 1) and (2, 2) the expansions of the function√
1 +
√
x+ ε as ε→ 0+ with x = O(1) and X = x/ε = O(1).

(c) Find expansions of the function 1 + log x/ log ε as ε→ 0+ with x = O(1) and X = x/ε = O(1).
Check that matching for m = n = 1 does not work and suggest how to resolve this situation.

Q3 For each of the following problems find and match two terms of the outer and inner expansions,
y ∼ y0(x) + εy1(x) + · · · and y ∼ Y0(X) + εY1(X) + · · · , respectively, where X = x/ε = O(1) as
ε → 0+. In particular, show that in case (a) the matching is automatic in the sense it does not
determine any of the constants of integration and that in case (b) y0 = 0.

(a) εy′ + y = x for x > 0, with y(0) = 1;

(b) Optional. (x+ ε)y′ + y = 0 for x > 0, with y(0) = 1.

Q4 Consider as ε→ 0+ the problem εy′′ + x1/2y′ + y = 0 for 0 < x < 1, with y(0) = 0 and y(1) = 1.

(a) Show that there can be no boundary layer at x = 1.

(b) Show that in the outer region y ∼ e2(1−x1/2) for x = O(1) as ε→ 0+.

(c) Show that there is a boundary layer of thickness of O(ε2/3) at x = 0 in which the first two
terms of the differential equation are in balance.

(d) Match to show that in the inner region y ∼ C
∫ X

0 e−2t3/2/3 dt, where X = ε−2/3x = O(1) as
ε→ 0+ and C is a constant that you should determine in terms of the gamma function.

Q5 (a) Consider as ε→ 0+ the problem εy′′ + yy′ − y = 0 for 0 < x < 1, with y(0) = 1 and y(1) = 3.
Assuming that there is a boundary layer only near x = 0, find the leading-order terms in the
outer and inner expansions and match them.

(b) Optional. Consider as ε→ 0+ the problem εy′′ + yy′ − y = 0 for 0 < x < 1, with y(0) = −3/4
and y(1) = 5/4, in which the boundary layer is at an interior position. Find and match the
leading order terms in the outer and inner expansions and determine the position of the interior
layer.

Q6 Consider as ε→ 0+ the problem y′′ + εy′ = 0 for 0 < x < L, with y(0) = 0 and y(L) = 1.

(a) If L = O(1) as ε→ 0+, show that

y ∼ x

L
+ ε

x(L− x)

2L
+ · · · as ε→ 0+.

(b) For large values of L this expansion gives y′(0) = ε/2, but the exact solution is y =
(1− e−εx)/(1− e−εL), giving y′(0) = ε as L→∞. Explain.
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Q1 (a) Show that ẍ+ εẋ+ x = 0 has a multiple scales solution of the form

x ∼ 1

2

(
A(T )eit +A(T )e−it

)
as ε→ 0+ with T = εt = O(1), (1)

where A is a complex function of T that you should determine and A denotes the complex
conjugate of A. By writing A(T ) = R(T )eiΘ(T ), where R ≥ 0, show that the result agrees with
the expansion of the exact solution for t = O(1/ε).

(b) Show that ẍ + x = εx3 has a multiple scales solution of the form (1) above, provided A(T )
satisfies a differential equation that you should determine. Hence, determine A(T ).

Q2 Consider the differential equation

d

dx

(
D
(
x,
x

ε

) du

dx

)
= f

(
x,
x

ε

)
.

where D(x,X) > 0 and f(x,X) are smooth and periodic in X with period one. Determine the PDEs
satisfied by u0, u1 and u2 in the multiple scales expansion u ∼ u0(x,X)+εu1(x,X)+ε2u2(x,X)+· · ·
as ε→ 0+ with X = x/ε = O(1). Deduce that, if u0, u1 and u2 are periodic in X with period one,
then u0 is a function only of x satisfying a second-order ODE that you should determine.

Q3 Determine the leading-order term in the WKB expansions y(x) ∼ A(x)eiu(x)/ε as ε → 0+ for the
two independent solutions of (a) ε2y′′ + xy = 0 for x > 0; (b) ε2y′′ − xy = 0 for x > 0. How close
to x = 0 do you have to be for these expansions to lose their validity?

Q4 Optional. The function y(x) satisfies εy′′ + y′ + xy = 0 for 0 < x < 1, with y(0) = 0 and y(1) = 1,
where ε > 0.

(a) Obtain a two-term approximation using a WKB expansion of the form y = eS(x)/ε, with
S(x) ∼ S0(x) + εS1(x) + · · · as ε→ 0+.

(b) Use boundary layer theory to analyse the problem as ε → 0+. Determine the positions and
scalings of the boundary layer(s) and find the leading-order outer and inner solutions. Match
the outer and inner solutions. Hence determine a leading-order additive composite expansion.

Q5 The function y(x) satisfies ε2y′′+ (1−x)y = 0 for x > 0, with y(0) = 1 and y(∞) = 0, where ε > 0.

(a) By making the change of variable x = 1 + ε2/3X, find the exact solution y(x) using Airy
functions.

(b) Use WKB theory and the method of matched asymptotic expansions to find the leading-order
asymptotic solution for x− 1 = O(1) and X = O(1) as ε→ 0+.

[You may quote the asymptotic behaviour of the Airy functions Ai(X) and Bi(X) as X → ±∞.]

Q6 Suppose that, for ε > 0,

I(ε) =

∫ ∞
0

e−t dt

1 + εt
=
e1/ε

ε

∫ ∞
1/ε

e−t dt

t
.

(a) Using integration by parts show that

I(ε) =
e1/ε

ε

[
e−1/ε

N∑
n=1

(−1)n−1(n− 1)! εn + (−1)NN !

∫ ∞
1/ε

e−t dt

tN+1

]
,

and hence deduce that I(ε) ∼
∑∞

n=0(−1)nn! εn as ε→ 0+.



(b) For fixed ε > 0, what happens to SN (ε) =
∑N−1

n=0 (−1)nn! εn as N becomes large? Given that
I(0.2) ≈ 0.85211088 and I(0.1) ≈ 0.91563334, plot |SN (ε)−I(ε)| as a function of N for ε = 0.2
and 0.1. What value of N gives the best approximation for ε = 0.2 and for ε = 0.1?

Q7 (a) Suppose ε∇2u = u in r2 = x2 + y2 < 1 with u = 1 on r = 1. Show that a formal boundary
layer analysis as ε→ 0+ gives u = e−R+O(ε1/2) for R = ε−1/2(1−r) = O(1) and u = o(εn) for
all n ∈ N for 1−r = O(1). Verify the formal result by expanding the exact solution, which you
may assume to be given by u = I0(r/

√
ε)/I0(1/

√
ε), where I0 is the modified Bessel function

I0(x) =
1

π

∫ π

0
cos(ix sin θ) dθ.

(b) Suppose ε∇2u = ux in y > 0, with u = 1 on y = 0, x > 0; uy = 0 on y = 0, x < 0; and u→ 0
as x2 + y2 →∞, y > 0. Show that a formal boundary layer analysis as ε→ 0+ gives

u = erfc

(
Y

2
√
x

)
+O(ε) for Y =

y√
ε

= O(1), x > 0

and u = o(εn) for all n ∈ N almost everywhere else. Where does u satisfy neither of these
approximations?

Q8 Show that the van der Pol equation

ẍ+ ε(x2 − λ)ẋ+ x = 0

has a multiple scales solution of the form of Eqn. (1) above, provided A(T ) satisfies a differential
equation that you should determine. Show that as λ increases through zero a periodic solution is
born in which x is approximately sinusoidal in t, with period 2π and amplitude 2

√
λ.


