- Q1 (a) Write down the condition for $\{a_n(\epsilon)\}_{n\in\mathbb{N}_0}$ to be an asymptotic sequence as $\epsilon \to 0$.
	- (b) Write down the condition for $\sum_{n=0}^{\infty} a_n(\epsilon)$ to be an asymptotic expansion of a function $f(\epsilon)$ as $\epsilon \rightarrow 0.$
	- (c) Find $a_n(\epsilon)$ when $f(\epsilon) = \log(1 \log \epsilon)$ for $\epsilon > 0$.
	- (d) Find the functional dependence of $a_n(\epsilon)$ on ϵ when $f(\epsilon) = \exp(-1/(\epsilon^2 + \epsilon^3))$ for $\epsilon > 0$.
- Q2 (a) Find the first three terms in the asymptotic expansions as $\epsilon \to 0$ of the roots of $x^3 + x \epsilon = 0$ using both iterative and expansion methods.
	- (b) By rescaling x or otherwise, find the first three terms in the asymptotic expansions as $\epsilon \to 0$ of the roots of $\epsilon^3 x^2 + \epsilon x + 1 = 0$. When do these expansions converge?
	- (c) Optional By rescaling x or otherwise, find the first two terms in the asymptotic expansions as $\epsilon \to 0$ of the roots of $\epsilon^2 x^3 + x^2 + 2x + \epsilon = 0$.
- Q3 (a) Find the first term in the asymptotic expansions as $\epsilon \to 0$ of the roots of (i) $x^3 + \epsilon(ax + b) = 0$ and (ii) $\epsilon x^3 + ax + b = 0$, where a, $b = O(1)$ as $\epsilon \to 0$.
	- (b) Find the first two terms in the asymptotic expansion of $x(\epsilon)$ as $\epsilon \to 0$, where $x(\epsilon)$ is the real solution nearest 0 of

$$
\sqrt{2} \sin \left(x + \frac{\pi}{4}\right) - 1 - x + \frac{x^2}{2} = -\frac{\epsilon}{6}.
$$

(c) Show that $\{\log(1/\epsilon), \log(\log(1/\epsilon)), \log(\log(\log(1/\epsilon)))\}$, ... } forms an asymptotic sequence as $\epsilon \to 0^+$. Find the first three terms in the asymptotic expansion as $\epsilon \to 0^+$ of the solution of $x = \epsilon \log(1/x)$.

- Q1 Let α be a real constant and β a positive constant with $\alpha \neq \beta 1$. Derive the first term in the asymptotic expansion of $\int_x^{\infty} t^{\alpha} e^{-t^{\beta}} dt$ as $x \to \infty$.
- Q2 Derive the first two terms in the asymptotic expansion of $\int_0^x e^{t^3} dt$ as $x \to \infty$.
- Q3 Use Laplace's method to derive the leading-order asymptotic behaviour as $x \to \infty$ of the integrals

$$
I_1(x) = \int_{-\pi/2}^{\pi/2} e^{-x(t^2 - \sin^2 t)} dt, \quad I_2(x) = \int_0^{\infty} e^{-2t - x/t^2} dt.
$$

[You may assume that $\int_0^\infty e^{-t^n} dt = \Gamma(1/n)/n$ for $n \in \{2, 4\}$ and $\Gamma(1/2) = \sqrt{\pi}$.]

Q4 Use the method of stationary phase to derive the leading-order asymptotic behaviour as $x \to \infty$ of the integrals

$$
J_1(x) = \int_0^1 \cos(xt^4) \tan(t) dt,
$$

Optional
$$
J_2(x) = \int_0^1 \exp[ix(t - \sin t)] dt.
$$

[You may assume that $\int_0^\infty e^{it^3} dt = e^{i\pi/6} \Gamma(1/3)/3$ and $\int_0^\infty t e^{it^4} dt = e^{i\pi/4} \Gamma(1/2)/4$.]

Q5 In this problem, you will use the method of steepest descents to derive the leading-order asymptotic behaviour as $x \to \infty$ of the integral

$$
I(x) = \int_{-1}^{1} (1 - t^2)^N e^{ixt} dt,
$$

where N is an integer and the contour of integration is a line segment from $t = -1$ to $t = 1$.

- (a) Find and sketch in the complex t-plane the steepest descent contours through $t = \pm 1$.
- (b) By deforming the contour of integration to a new contour that goes through both steepest descent contours, show that $I(x) = I_-(x) - I_+(x)$, where

$$
I_{\pm}(x) = \int_{\pm 1}^{\pm 1 + i\infty} (1 - t^2)^N e^{ixt} dt.
$$

(c) Use Laplace's method to derive the leading-order asymptotic behaviour as $x \to \infty$ of the integrals $I_{\pm}(x)$, and hence of $I(x)$.

[You may assume that $\Gamma(m+1) = \int_0^\infty t^m e^{-t} dt = m!$ for integer m.]

Q6 Consider the error function

$$
\text{erf}(z) = \frac{2}{\sqrt{\pi}} \int_0^z e^{-s^2} \, \mathrm{d}s = \frac{2r}{\sqrt{\pi}} \int_0^{e^{i\theta}} e^{-r^2 t^2} \, \mathrm{d}t,
$$

where we have substituted $z = re^{i\theta}$ and $s = rt$. Use the method of steepest descents to derive the leading-order asymptotic behaviour of erf(z) as $r = |z| \to \infty$ for $0 < \theta < \pi/2$, distinguishing carefully between the cases $0 < \theta \leq \pi/4$ and $\pi/4 < \theta < \pi/2$.

Q1 State which method or methods could be used to find the asymptotic behaviour of the following integrals in which x is real:

$$
\int_0^{\pi/2} e^{ix\cos t} dt, \int_0^1 \ln t \, e^{ixt} dt, \int_0^x t^{-1/2} e^{-t} dt, \int_0^{\pi/2} e^{-x\sin^2 t} dt, \int_0^1 \exp\left(ix e^{-1/t}\right) dt \text{ as } x \to \infty;
$$

$$
\int_0^{10} \frac{e^{-xt}}{1+t} dt, \int_0^{\pi/2} \frac{dt}{\sqrt{\cos^2 t + x\sin^2 t}}, \int_0^1 \frac{\sin(tx)}{t} dt, \int_0^1 \frac{\ln t}{x+t} dt \text{ as } x \to 0^+.
$$

You need not evaluate the asymptotic expansions.

- Q2 (a) Write out in words Van Dyke's matching rule " $(m.t.i.)(n.t.o.) = (n.t.o.)(m.t.i.)$ ".
	- (b) Find and match for $(m, n) = (1, 1), (1, 2), (2, 1)$ and $(2, 2)$ the expansions of the function p and and match for $(m, n) = (1, 1), (1, 2), (2, 1)$ and $(2, 2)$
 $\sqrt{1 + \sqrt{x + \epsilon}}$ as $\epsilon \to 0^+$ with $x = O(1)$ and $X = x/\epsilon = O(1)$.
	- (c) Find expansions of the function $1 + \log x / \log \epsilon$ as $\epsilon \to 0^+$ with $x = O(1)$ and $X = x/\epsilon = O(1)$. Check that matching for $m = n = 1$ does not work and suggest how to resolve this situation.
- Q3 For each of the following problems find and match two terms of the outer and inner expansions, $y \sim y_0(x) + \epsilon y_1(x) + \cdots$ and $y \sim Y_0(X) + \epsilon Y_1(X) + \cdots$, respectively, where $X = x/\epsilon = O(1)$ as $\epsilon \to 0^+$. In particular, show that in case (a) the matching is automatic in the sense it does not determine any of the constants of integration and that in case (b) $y_0 = 0$.
	- (a) $\epsilon y' + y = x$ for $x > 0$, with $y(0) = 1$;
	- (b) Optional. $(x + \epsilon)y' + y = 0$ for $x > 0$, with $y(0) = 1$.

Q4 Consider as $\epsilon \to 0^+$ the problem $\epsilon y'' + x^{1/2}y' + y = 0$ for $0 < x < 1$, with $y(0) = 0$ and $y(1) = 1$.

- (a) Show that there can be no boundary layer at $x = 1$.
- (b) Show that in the outer region $y \sim e^{2(1-x^{1/2})}$ for $x = O(1)$ as $\epsilon \to 0^+$.
- (c) Show that there is a boundary layer of thickness of $O(\epsilon^{2/3})$ at $x=0$ in which the first two terms of the differential equation are in balance.
- (d) Match to show that in the inner region $y \sim C \int_0^X e^{-2t^{3/2}/3} dt$, where $X = \epsilon^{-2/3}x = O(1)$ as $\epsilon \to 0^+$ and C is a constant that you should determine in terms of the gamma function.
- Q5 (a) Consider as $\epsilon \to 0^+$ the problem $\epsilon y'' + yy' y = 0$ for $0 < x < 1$, with $y(0) = 1$ and $y(1) = 3$. Assuming that there is a boundary layer only near $x = 0$, find the leading-order terms in the outer and inner expansions and match them.
	- (b) Optional. Consider as $\epsilon \to 0^+$ the problem $\epsilon y'' + yy' y = 0$ for $0 < x < 1$, with $y(0) = -3/4$ and $y(1) = 5/4$, in which the boundary layer is at an interior position. Find and match the leading order terms in the outer and inner expansions and determine the position of the interior layer.
- Q6 Consider as $\epsilon \to 0^+$ the problem $y'' + \epsilon y' = 0$ for $0 < x < L$, with $y(0) = 0$ and $y(L) = 1$.
	- (a) If $L = O(1)$ as $\epsilon \to 0^+$, show that

$$
y \sim \frac{x}{L} + \epsilon \frac{x(L-x)}{2L} + \cdots
$$
 as $\epsilon \to 0^+$.

(b) For large values of L this expansion gives $y'(0) = \epsilon/2$, but the exact solution is $y =$ $(1-e^{-\epsilon x})/(1-e^{-\epsilon L})$, giving $y'(0)=\epsilon$ as $L\to\infty$. Explain.

Q1 (a) Show that $\ddot{x} + \epsilon \dot{x} + x = 0$ has a multiple scales solution of the form

$$
x \sim \frac{1}{2} \left(A(T)e^{it} + \overline{A}(T)e^{-it} \right) \quad \text{as } \epsilon \to 0^+ \text{ with } T = \epsilon t = O(1), \tag{1}
$$

where A is a complex function of T that you should determine and \overline{A} denotes the complex conjugate of A. By writing $A(T) = R(T)e^{i\Theta(T)}$, where $R \geq 0$, show that the result agrees with the expansion of the exact solution for $t = O(1/\epsilon)$.

- (b) Show that $\ddot{x} + x = \epsilon x^3$ has a multiple scales solution of the form (1) above, provided $A(T)$ satisfies a differential equation that you should determine. Hence, determine $A(T)$.
- Q2 Consider the differential equation

$$
\frac{\mathrm{d}}{\mathrm{d}x}\left(D\left(x,\frac{x}{\epsilon}\right)\frac{\mathrm{d}u}{\mathrm{d}x}\right) = f\left(x,\frac{x}{\epsilon}\right).
$$

where $D(x, X) > 0$ and $f(x, X)$ are smooth and periodic in X with period one. Determine the PDEs satisfied by u_0, u_1 and u_2 in the multiple scales expansion $u \sim u_0(x, X) + \epsilon u_1(x, X) + \epsilon^2 u_2(x, X) + \cdots$ as $\epsilon \to 0^+$ with $X = x/\epsilon = O(1)$. Deduce that, if u_0, u_1 and u_2 are periodic in X with period one, then u_0 is a function only of x satisfying a second-order ODE that you should determine.

- Q3 Determine the leading-order term in the WKB expansions $y(x) \sim A(x)e^{iu(x)/\epsilon}$ as $\epsilon \to 0^+$ for the two independent solutions of (a) $\epsilon^2 y'' + xy = 0$ for $x > 0$; (b) $\epsilon^2 y'' - xy = 0$ for $x > 0$. How close to $x = 0$ do you have to be for these expansions to lose their validity?
- Q4 Optional. The function $y(x)$ satisfies $\epsilon y'' + y' + xy = 0$ for $0 < x < 1$, with $y(0) = 0$ and $y(1) = 1$, where $\epsilon > 0$.
	- (a) Obtain a two-term approximation using a WKB expansion of the form $y = e^{S(x)/\epsilon}$, with $S(x) \sim S_0(x) + \epsilon S_1(x) + \cdots$ as $\epsilon \to 0^+.$
	- (b) Use boundary layer theory to analyse the problem as $\epsilon \to 0^+$. Determine the positions and scalings of the boundary layer(s) and find the leading-order outer and inner solutions. Match the outer and inner solutions. Hence determine a leading-order additive composite expansion.
- Q5 The function $y(x)$ satisfies $\epsilon^2 y'' + (1-x)y = 0$ for $x > 0$, with $y(0) = 1$ and $y(\infty) = 0$, where $\epsilon > 0$.
	- (a) By making the change of variable $x = 1 + \epsilon^{2/3} X$, find the exact solution $y(x)$ using Airy functions.
	- (b) Use WKB theory and the method of matched asymptotic expansions to find the leading-order asymptotic solution for $x - 1 = O(1)$ and $X = O(1)$ as $\epsilon \to 0^+$.

[You may quote the asymptotic behaviour of the Airy functions $Ai(X)$ and $Bi(X)$ as $X \to \pm \infty$.]

Q6 Suppose that, for $\epsilon > 0$,

$$
I(\epsilon) = \int_0^\infty \frac{e^{-t} dt}{1 + \epsilon t} = \frac{e^{1/\epsilon}}{\epsilon} \int_{1/\epsilon}^\infty \frac{e^{-t} dt}{t}.
$$

(a) Using integration by parts show that

$$
I(\epsilon) = \frac{e^{1/\epsilon}}{\epsilon} \left[e^{-1/\epsilon} \sum_{n=1}^{N} (-1)^{n-1} (n-1)! \epsilon^n + (-1)^N N! \int_{1/\epsilon}^{\infty} \frac{e^{-t} dt}{t^{N+1}} \right],
$$

and hence deduce that $I(\epsilon) \sim \sum_{n=0}^{\infty} (-1)^n n! \epsilon^n$ as $\epsilon \to 0^+$.

- (b) For fixed $\epsilon > 0$, what happens to $S_N(\epsilon) = \sum_{n=0}^{N-1} (-1)^n n! \epsilon^n$ as N becomes large? Given that $I(0.2) \approx 0.85211088$ and $I(0.1) \approx 0.91563334$, plot $|S_N(\epsilon) - I(\epsilon)|$ as a function of N for $\epsilon = 0.2$ and 0.1. What value of N gives the best approximation for $\epsilon = 0.2$ and for $\epsilon = 0.1$?
- Q7 (a) Suppose $\epsilon \nabla^2 u = u$ in $r^2 = x^2 + y^2 < 1$ with $u = 1$ on $r = 1$. Show that a formal boundary layer analysis as $\epsilon \to 0^+$ gives $u = e^{-R} + O(\epsilon^{1/2})$ for $R = \epsilon^{-1/2}(1-r) = O(1)$ and $u = o(\epsilon^n)$ for all $n \in \mathbb{N}$ for $1-r = O(1)$. Verify the formal result by expanding the exact solution, which you an $n \in \mathbb{N}$ for $1 - r = \mathcal{O}(1)$, vertry the formal result by expanding the exact solution, which yet
may assume to be given by $u = I_0(r/\sqrt{\epsilon})/I_0(1/\sqrt{\epsilon})$, where I_0 is the modified Bessel function

$$
I_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(ix \sin \theta) \, d\theta.
$$

(b) Suppose $\epsilon \nabla^2 u = u_x$ in $y > 0$, with $u = 1$ on $y = 0$, $x > 0$; $u_y = 0$ on $y = 0$, $x < 0$; and $u \to 0$ as $x^2 + y^2 \to \infty$, $y > 0$. Show that a formal boundary layer analysis as $\epsilon \to 0^+$ gives

$$
u = \text{erfc}\left(\frac{Y}{2\sqrt{x}}\right) + O(\epsilon) \text{ for } Y = \frac{y}{\sqrt{\epsilon}} = O(1), \quad x > 0
$$

and $u = o(\epsilon^n)$ for all $n \in \mathbb{N}$ almost everywhere else. Where does u satisfy neither of these approximations?

Q8 Show that the van der Pol equation

$$
\ddot{x} + \epsilon (x^2 - \lambda)\dot{x} + x = 0
$$

has a multiple scales solution of the form of Eqn. (1) above, provided $A(T)$ satisfies a differential equation that you should determine. Show that as λ increases through zero a periodic solution is equation that you should determine. Show that as λ increases through zero a period born in which x is approximately sinusoidal in t, with period 2π and amplitude $2\sqrt{\lambda}$.