C4.8 Complex Analysis: conformal maps and geometry

Sheet 3

Problem 1.

Give an example of a function u which is harmonic in \mathbb{D} and continuous in \mathbb{D} such that its harmonic conjugate \tilde{u} is not continuous up to the boundary. (*Hint: You can look for an* example such that $f = u + i\tilde{u}$ is univalent in \mathbb{D} .)

Problem 2. Show that $K_{\alpha} \in S$ where

$$K_{\alpha}(z) = \frac{1}{2\alpha} \left[\left(\frac{z+1}{1-z} \right)^{\alpha} - 1 \right], \qquad \alpha \in (0,2].$$

Find $K_{\alpha}(\mathbb{D})$.

Problem 3. Show that Joukowsky function J = z + 1/z belongs to Σ and find $J(\mathbb{D}_{-})$. Show that the modifies Joukowsky function $J_k(z) = z + k/z$ is also in Σ for all -1 < k < 1. Find the image $J_k(\mathbb{D}_{-})$.

Problem 4. Let f be a function from the class S. Prove that the following functions are also from S

(1) Let μ be a Möbius transformation preserving \mathbb{D} , then we can define

$$f_{\mu} = \frac{f \circ \mu - f \circ \mu(0)}{(f \circ \mu)'(0)}.$$

Important particular case is $f_{\theta}(z) = e^{-i\theta} f(e^{i\theta}z)$.

- (2) Reflection of f defined as $\bar{f}(\bar{z})$.
- (3) Koebe transform

$$K_n(f)(z) = f^{1/n}(z^n)$$

(you also have to show that $K_n f$ could be defined as a single valued function for all positive integer n).

The same is true for functions from the class Σ' .

Problem 5. Prove the Koebe Distortion Theorem: Let $f : \Omega \to \Omega'$ be a univalent map and let z be some point in Ω . Then

$$\frac{1}{4}\operatorname{dist}(f(z),\partial\Omega') \le |f'(z)|\operatorname{dist}(z,\partial\Omega) \le 4\operatorname{dist}(f(z),\partial\Omega')$$

Problem 6. Let f be a univalent function in \mathbb{D} . Show that for all $z \in \mathbb{D}$

$$\frac{1}{4}(1-r^2)|f'(z)| \le \operatorname{dist}(f(z), \partial f(\mathbb{D})) \le (1-r^2)|f'(z)|$$

where r = |z|. *Hint: Consider a transformation of f described in the Problem 4 (1).*

Problem 7. Let $g = z + \sum b_n z^{-n}$ be a function from the class Σ . From the Area Theorem we know that $|b_n| \le 1/\sqrt{n}$. Show that this inequality is not sharp for $n \ge 2$.

Problem 8. Let $f : \mathbb{D} \to \Omega$ be a univalent map from the class S, i.e. its expansion at zero is of the form $f(z) = z + a_2 z^2 + a_3 z^3 + \ldots$ Let Γ_n be the set of points in Ω where the Green's function with the pole at 0 is equal to 1/n.

Prove that for every n we have the following inequality

$$|a_n| \le \frac{e}{2\pi n} \text{length}(\Gamma_n).$$

Hint: Can you write length(Γ_n) *in terms of f*?