C3.8 Analytic Number Theory, Michaelmas 2018 Exercises 4

Question 1. Prove that 7(X) < 27(X/2) for X sufficiently large.
Solution 1. By the PNT, 7(x) = x/logx + x/(log x)? + O(z/(log z)?), so
X X X

2m(X/2) = + +0 .
m(X/2) log X —log2 ' log? X (log3X)
But X X log 2 1
og
- - ( O(——)).
log X —log2 logX log X log” X

which is bigger than the expression for 7(X) when X is large enough.
Question 2. Let p, denote the n'" prime. Prove that
prn = nlogn + nloglogn + O(n).

Solution 2. Since n = 7(p,,) and w(x) ~ x/log x, we have nlogn = 7(p,,) log(w(py)) ~
Pn 80 P, = (1 4+ o(1))nlogn. In particular, logp, = logn + loglogn + o(1).
Therefore

Pn Pn Pn 1

=700 = g+ ) = (1+0(i5z))
n = m(pn) log pn, + (log pn)? logn + loglogn + o(1) + logn
This gives

pn = (nlogn +nloglogn + o(n))(1+ O(1/logn))
=nlogn + nloglogn + O(n).
Question 3. (i) Let # € (0,1) be such that R(p) < 6 for all non-trivial zeros
p- Deduce that for all x > 2

Z A(n) = z + O(z?(log x)?).

n<x

(ii) Let v € (0,1) be such that for all z > 2
Z An) =2+ O(z").
n<x

Show that R(p) < v for all zeros of {(s).
(Hint: Use partial summation to prove analytic continuation of ¢’/{)

(iii) Let o € (0,1) be fixed. Show that if for all z > 2 we have
Z Aln) =+ O(mo‘ exp(y/log x))
n<x

then in fact

Z A(n) =z + O(z*(log z)?).

n<x



Solution 3. (i) This is the same as the proof of the error term under the
Riemann Hypothesis from lectures. Using the explicit formula with 7' = z

gives
P
An)=x— — +O(logz)?
> Am=r- Y 2 +0foga)

n<w lol<a

|zP| < 2% for all p by assumption, and |p| > 1 since ¢(0) # 0. If |S(p)]| €
[n,n + 1] then 1/|p| < 1/(n+ 1). Thus

> Am) =a+0(a" Y alk |§(‘2‘+€1["’” i 1”’) + O(log z)*.

n<x n>0

We know that the size of the set above is O(log x), and so we find that

Z Aln) =z + O(a:9 Z rlzoiﬁ) + O(log z)? = z + O(z% (log )?).

n<x n>0

(ii) By partial summation for R(s) > 1

- 1—s 1 ts+1

We see that since the numerator of the integrand is O(¢7) by assumption,
the integral converges absolutely for $(s) > ~. This gives an analytic
continuation of ¢'/¢ to R(s) > v, and so {(s) cannot have any zeros in
this region. Hence $(p) < + for all zeros p.

(iii) By (44) we have that for any € > 0 all zeros p have R(p) < o+ ¢. This
means that R(p) < « for all zeros p. But then by (i) we see that this
means that the error term can actually be taken as z°(log z)?).

Question 4. (i) Show that for R(s) > 1 we have

p m=1

(ii) Show that 3 + 4 cos(f) + cos(26) > 0.
(ili) Using (i) and (i), show that for o > 1
3log (o) + 4R1log ((o + it) + Rlog(¢(o + 2it) > 0.
Deduce from this that for o > 1

C(o)’1¢(e +it)[*]¢(o + 2it)| > 1.



(iv) Deduce from the above inequality that ¢(1 + it) # 0.
(Hint: Consider o — 1)

Solution 4. (i) For (s) > 1 we have

Since |p®| < 1 when R(s) > 1, we have that p~* is in the convergent region
of the Taylor expansion log(1 — z) = —x — 2%/2 — 23/3 — .... Therefore

1\-1 1
log ((s) = ijlog(l —) = Z%ﬁ Tl

(ii) Since cos(26) = 2cos(#)? — 1, we have 3 + 4 cos(8) + cos(260) = 2(cos(8) +
1)2>0.

(iii) We see from (i) that

3log (o) + 4R1og ¢ (o + it) + Rlog(¢ (o + 2it)

— Z Z mplmg (3 + 4%(p—imt) + %(p—%mt))
p m=1

— 1
= E E (3 + 4 cos(mtlog p) + cos(2imt logp))
mpma

P

By (i9) this is a sum of non-negative terms. Exponentiating both sides
gives ((0)3|¢(o + it)|*|¢ (o + 2it)| > 1.

(iv) Assume that ((1 + itg) = 0 for some ¢ty # 0. Then for o > 1, we have
¢(o+itg) = O(o —1). We know that for o < 2 we have ((0) < 1/(c —1).
Finally, ¢ has no poles with $(s) > 1 except at s = 1, so ((o + 2itg) < 1.
But then

—1)4
1< ¢(0)[¢(o +it)| ¢ (o + 2it)| < H <o—1.
Letting 0 — 1 we get a contradiction.

Question 5. It is a fact that

R N S () B SR
;xzx(n)_ Ep:p 50) 5 log(1 ).

where the sum is understood to be the limit as T' — oo of le(p)|<T xP/p over
non-trivial zeros p (it is not absolutely convergent).

(i) Using this fact, show that {(s) must have at least one non-trivial zero.



(ii) Show that if p is a non-trivial zero of {(s), then so is 1 — p.
(iii) Let € > 0. Using Question 3, deduce that we cannot have for all z > 2
that
3 An) =z + 0('/>).
n<x

Solution 5. (i) If ¢(s) has no non-trivial zeros, then we would find that

Z An) =z — i/(((()))) — %log(l — a7 3.

But the right hand side is continuous, whereas the left hand side is not
continuous at primes, so this is impossible.

n<x

(ii) If p is a zero of {(s), then so is 1 — p by the functional equation.

(iii) We know ((s) must have a non-trivial zero p, and so also have 1 — p. But
we have max(R(p), R(1 — p)) > 1/2, so one has real part at least 1/2. But
by Question 3, this means we cannot have >, _ A(n) = 2 + O(z/?7¢),
since then all zeros would have real part at most 1/2 — e.

Question 6. Recall from Sheet 3 Q6: If f : R — C is smooth and non-zero
only on some interval [, 3] C (0,00) then for any o € R

n 1 o+io0o ys
L F(s)Ld
f(y) 2 /J,ioo (S)ns %

where F(s) = [;° f(z)a*"'dx is a smooth function with |F(o + it)| < 1/[¢[*%°
and with no zeros or poles.

(i) Show that

—1i00

0 n B -1 24100 s C/(S)
;A(mf(y) = %/2 y°F(s) (s ds.
(ii) Deduce that
Soaes(y) = [ s Sy + 0w

where ) , 1s a sum over all non-trivial zeros of ¢(s) with multiplicity.

Solution 6. (i) We choose ¢ = 2 and us the Mellin inversion formula for f:

iA(n)f(Z) _ LS /:HOO yFGs) g,

) S
2mi = oo n

Since |F(s)| < 1/|s]* and |[n™%| < 1/n? the above converges abso-
lutely so we may change the order of summation and integration. Since
—¢'(s)/¢(s) = >0, A(n)n™*, this gives the result.



(ii) As in Lectures, we may choose T' € [T1,T1 + 1] such that no zeros p
have ||S(p) — T| < 1/(log T)? if Ty is large enough. By Cauchy’s residue
theorem

1 /1/4iT /2 iT /2+2T / 1/4+zT ()
— F(s)=2=ds = —yF(1)+) y"F(p),
27”( —1/4+iT 1/4—iT 2 2+4+4T ¢(s) zp:

since ¢’/¢(s) has a simple pole at s = 1 with residue -1, and simple poles
at s = p with residue m,, (multiplicity of zero), and y*F(s) has no poles.

We have F(s) < 1/|s]'% and |y°| = y™(). Since we stay away from zeos
of ((s), we have that ('(s)/¢(s) < log(2 + |s|)® along all the contours
above. We see that the first contour contributes

T 3
_ log(2 + [t]) -
1/4 dt 1/4
<Y /_T (1/d+ o<y

The second and fourth contours contribute < y%(logT)3/T%. Thus,
letting T' — oo, we see that

/2+iooysF( )CI(S)ds——yF +Zpr Oy~
2—ico ¢(s)
Using (4), this gives the result, noting that F'(1 fo

Question 7. For this question you may use the follovvmg fact: |C (o +it)| <
[t|! =7 log |t| for o < 1 and [t| > 1.

(i) Show using Perron’s formula that for 2 < T < 2z
1 c+iT s 1 3
g HnS o) / 2 (5)2(s)ds + o(m),
=~ " 2mi TS T

where ¢ = 1+ 1/logx and for R(s) > 1
1 1 1
20 =T(- L - v L)
( ) - p25 ps-‘,-l p28+1

(ii) Show that the product of for Z(s) converges absolutely for R(s) > 1/2.

(iii) Let e = 1/1000. By moving the line of integration to R(s) = 1/2+¢, show
that

Z p(n _ $H(1_7+ )+O<I1/2+6T1/276 1ng)+0<x(10§z)3>

n<x

(iv) Deduce that

S e (1 ) <o ()

n<x



Solution 7. (i) Since ¢(n)/n < 1, by Perron’s formula

(i)

(iii)

wu(n 1 et gs r(log z)?
Z " 2mi /C ?G(S)deLO( T )’

n<x —iT

where for R(s) > 1

S)Z§W:H(1+;;j).

We see that

1 1 1 1 1
<1+ 1+s)(1_E):1+p1+2s_p1+s_1§'

Therefore, dividing through by 1 —p~° and taking the product over p, we
find for R(s) > 1 that G(s) = ((s)Z(s).

For1> 0 = R(s) > 1/2we have [1—p~25—p~ 1754 p~1725| < 143p~2R()),
Therefore

Mt b L
. p1+25 p1+s 2s

< exp (Z 10g(1+3p72‘7)) < exp (Z O(szg))-

This converges for R(s) > 1/2.

Since Z(s) converges for R(s) > 1/2, we see that 2°Z(s)/s has no poles in
the region R(s) > 1/2 + ¢, and {(s) just has a simple pole at s =1 (with
residue 1). Therefore, by Cauchy’s residue theorem

1 1/24e—iT c— c+iT 1/2+e+7,T
—( / / / / T (5)2(s)ds = 22(1).
2mi 1/2+e+iT 1/24e—iT +iT

Throughout the region of integration Z(s) = O(1). In the second and
fourth integrals, [((s)| < T* 7 logT, |r°| < z° and |1/s| < 1/T. There-
fore, since T' < x, these integrals contribute

¢ sxN\° z¢logz  xzlogw
1 (%) « .
< og:c/_l/4 T oK Te < T

In the first integral, ¢(s) < (1 + [t])/?~<logz, |2°| < z/?F€ and |1/s] <
1/(1 + |t]). Therefore this integral contributes

T
dt
< pt/?*te logx/ ( < /P2 1og 2.

T 1+ |t‘)1/2+e

Putting this together, and noting Z(1) = [, (1 — 2/p* + 3/p?) gives the
result.



(iv) Choose T = x'/? in for part (iii)

Question 8. Recall from Sheet 3 Q6: If f : R — C is smooth and non-zero
only on some interval [, 5] C (0,00) then for any o € R

n 1 o+1i00 ys
f (;) R
where F(s) = [¥ f(x)2*dx is a smooth function with |F(o + it)| < 1/[t[*%.
(i) Show that
= u(n)?é(n) ./n 1 [
S M () - L [ R Z6)ds
2

ot n Y 27 Jo_ioo

where Z(s) is the function appearing in Question 7.
(ii) Fix € > 0. Show that

i /f )dz) ( +i)+0(y1/2+6)

p3

(Compare the answer here to that in Question 7)

Solution 8. (i) We choose o = 2 and apply the Mellin inversion statement
to get

o~ 1(n)’6(n) \~ An)’6m) [
e e T

n=1 Y —100

Since R(s) > 2 we have [n™*| < 1/n? and |F(s)| < 1/]s|?, so the above
expression converges absolutely, and so we may swap the order of summa-
tion and integration. This gives

5t 2L (5 02

2—100

Recalling that Y p(n)?¢(n)/n'™* = ((s)Z(s) from the previous question
gives the result.

(ii) As before, we move the line of integration to R(s) = 1/2+¢€ using Cauchy’s
residue Theorem. The only pole is at s = 1.

1 1/24e—iT 2—iT 2+:iT 1/2+6+1T
2i (/ / / / *F(s)((s)Z(s)ds = yZ(1)F(1).
2mi 1/24e4+iT 1/2+e—iT 2 24iT

On the second and fourth integrals ((s) < T, y* < y?, Z(s) < 1 and
F(s) < 1/T'% 5o the contribution is O(z/T%°). On the first integral



ly*| < yt/?re |C(s)| < s, |Z(s)] < 1 and |F(s)| < 1/s]'%, so the
contribution is O(y/2*€). Thus, letting T — oo we find

1 24100 . 1/2+¢
5 | v FOZ()ds = yZ()F(1) + Oy /).

Question 9 (Bonus Question). Let o(n) = 3_,,, d be the sum of divisors of
n. Following the approach of Question 7 or Question 8, obtain an asymptotic

formula for 3 _ p(n)?o(n) or 3 u(n)?o(n)f(n/y).

Solution 9. We just give the argument for > u(n)?o(n)f(n/y); the argument
for the other case is essentially the same.

Note that o(n) < n7(n) = n'*t°(), Thus, using Mellin inversion and swap-
ping the order of summation and integration as in the previous question, we
have that

gu(n)za(n)f<n) = 2%” /33‘”00 (Z pn )ds

Y —100

We may swap the order of summation since |o(n)/n®*| < 1/n%? when R(s) = 3,
so everything converges absolutely. We have that for R(s) > 2

:g u(nisa(n) _ 1;[(1+p;1)

p+1 1 1 1 1
(5 ) (=) =t =t e

so G(s) = ((s —1)Z(s) where
1 1 1
Z(s) = H(l T pre2 + o st—1>7
and since |1 —p~ 2512 4 p=s — p= 25 <1 4+ 3p~2972 for 0 = R(s) < 2, we have

that
|Z(s)| < exp (Z log(l - 3p‘2"+2)) < exp (Z 0(p‘2”+2))7
p p

so Z(s) converges absolutely for £(s) > 3/2. Thus we want to estimate

1 [3+ico
— Yy F(8)Z(s)C(s — 1)ds.

2mi J3—ico

We move the line of integration to R(s) = 3/2 4+ e. The only pole of the
integrand is from ((s — 1) at s = 2. by Cauchy’s residue theorem

1 3/24e—iT 3+4T 3/2+e+7,T
2mi </ / / / “F(s)((s=1)Z(s)ds = y* Z(2) F(2).
21 3/24e+iT 3/2+e—iT 3T



On the second and fourth contours, |y*| < v3, [((s — 1)| < T, |Z(s)] < 1
and |F(s)] < T71%, so these contribute O(y*T~%?). On the first contour
lys| < y32, |C(s— 1) < (1+]s]), |Z(s)| < 1 and |[F(s)| < (1+]s|) 7%, so this
contributes O(y%/?). Letting T — oo then gives

1 3+100
Y F(s)((s = 1)Z(s)ds = y*F(2)Z(2) + O(y*/?).

% 3—1i00
This gives the desired asymptotic formula.

Question 10 (Bonus Question). Let ¥(z,y) = {n <z : p|n = p < y} be the
set of integers up to x which only involve prime factors of size at most y.

(i) Let a € (0,1) be fixed. Show that as x — oo

1 1
> —=log— +o(1).
«

zo<p<az

(ii) Show that for z'/2 <y < z we have

log x
U(x,y) = (1 - IOg(logy) + 0(1))x.
(iii) Show that for any x > 1 and z >y > 0

U(z,y) =V(x,z2) — Z \D(%,p).

p<y<z

(iv) Deduce that for z'/3 <y < /2

logz/logy 1

U(z,y) = (1 —log2 — / - (1 —log(v — 1))dv + 0(1))9:
2 v

(v) Define a function p: [0,00) = R by p(u) =1 if u <1 and for u > 1

o) =1 [t
Show that parts (i¢) and (iv) imply that for u <3
U(z,a") = (p(u) + o(1))a.
(vi) Show by induction that if
U(a,at") = (p(u) + o(1))a

for u < m, then the same equation holds for © < m + 1. Deduce that for
any fixed v > 0 we have

U(w,2'") = (p(u) + o(1))z.



Solution 10. (i) This follows from partial summation and the prime number
theorem. Actually it only requires Mertens’ Theorem: we have Zp < l/p=
loglogz — C' + o(1), s0 > 0 e, 1/p = loglogz — loglogz® + o(1) =
log1/a+ o(1).

(ii) A number has at most one prime factor bigger than y > xl/?
inclusion-exclusion

U(ey)=#n<at— Y #n<epnp=z+00) - 3 (2+00)

, so by

y<p<z y<p<z
1 1
= ac(l +o(1) — Z f) = :E(l - Ing —l—o(l)).
yp<a P 0gY

(iii) Again this is inclusion-exclusion based on the largest prime factor P*(n)

of n.
U(z,y) = Z 1= Z 1— Z 1=U(z,z2)— Z #{n <z: Pt (n)=p}
n<zx n<zx n<x y<p<z
PT(n)<y PT(n)<z  y<PT(n)<z

But, since the last set contains elements which are a multiple of p, we see
that #{n <z : P™(n) = p} = #{m < z/p: Plm) <p} = U(z/p,p).
(iv) Let z = /2, and apply the above identity. We have
U(z,y) = U(za)— > w(Z,p).
y<p<wzl/2 b
We now see that since y > 2'/% we have p > (z/p)'/?
sum, so we may apply (éi). This gives

U(z,y) = (1 —log2+ 0(1)>m - Z (1 - log(loligl/)p) + 0(1))3

y<p<wzl/2 b

for all p in the above

By partial summation

1/2

5 (")) [ (L

y<p<zl/2
logz/logy 1
x/ (1 — log(v — 1))dv.
2

v
(We made a change of variables v = logz/logp in the last line). This

gives the result.

(v) Since p(1) = 1 for u < 1, the result is trivial for u < 1. We then see
p(u) =1— ["dt/t =1 —logu for 1 < u < 2, so this agrees with (ii).
Finally, for 2 < u < 3 we see that

pu) = 1—/1u p(t; l)dt = ;0(2)—/2u M _ p(z)_/Zu (l—log(t—l)>%,

t

10



so this agrees with (iv).
Assume that for u < m we have ¥(z,z'/*) = (p(u) + o(1))z. Then by
(i),
) = weat - Y w(2).
p

2/ D) < p<gl/u
But if p > 2/t | we have p* > x/p, so if u < m we have

(e /p.p) = (p(FE22 1 o))

log p P

Thus

e /0) = (o) +o)a— Y ("B o)

lo
xl/(u+1)gpgxl/u gp p

/v
1 log 2/t

1) — dt

x(p(u)+0( ) /gcl/(uH) tlogtp( logt ) )

u+1

x(p(u) +o(1) — / ;p(v - 1)dv>.

u

Here we substituted v = logx/logt in the final line. But from the defini-
tion of p, for u > 2

u+1 . u+1 v —
plu+1)=1- /1 Mdt = p(u) — / udv,

v

so the above expression is z(p(u + 1) + o(1)), as required. Therefore we
see that if the formula holds for « < m, it also holds for u < m + 1.
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