
C3.8 Analytic Number Theory, Michaelmas 2018 Exercises 4

Question 1. Prove that π(X) 6 2π(X/2) for X sufficiently large.

Solution 1. By the PNT, π(x) = x/ log x+ x/(log x)2 +O(x/(log x)3), so

2π(X/2) =
X

logX − log 2
+

X

log2X
+O(

X

log3X
).

But
X

logX − log 2
=

X

logX

(
1 +

log 2

logX
+O(

1

log2X
)
)
.

which is bigger than the expression for π(X) when X is large enough.

Question 2. Let pn denote the nth prime. Prove that

pn = n log n+ n log log n+O(n).

Solution 2. Since n = π(pn) and π(x) ∼ x/ log x, we have n log n = π(pn) log(π(pn)) ∼
pn so pn = (1 + o(1))n log n. In particular, log pn = log n + log log n + o(1).
Therefore

n = π(pn) =
pn

log pn
+O

( pn
(log pn)2

)
=

pn
log n+ log log n+ o(1)

(
1 +O

( 1

log n

))
This gives

pn = (n log n+ n log log n+ o(n))(1 +O(1/ log n))

= n log n+ n log log n+O(n).

Question 3. (i) Let θ ∈ (0, 1) be such that <(ρ) ≤ θ for all non-trivial zeros
ρ. Deduce that for all x ≥ 2∑

n<x

Λ(n) = x+O(xθ(log x)2).

(ii) Let γ ∈ (0, 1) be such that for all x ≥ 2∑
n<x

Λ(n) = x+O(xγ).

Show that <(ρ) ≤ γ for all zeros of ζ(s).
(Hint: Use partial summation to prove analytic continuation of ζ ′/ζ)

(iii) Let α ∈ (0, 1) be fixed. Show that if for all x ≥ 2 we have∑
n<x

Λ(n) = x+O
(
xα exp(

√
log x)

)
then in fact ∑

n<x

Λ(n) = x+O(xα(log x)2).
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Solution 3. (i) This is the same as the proof of the error term under the
Riemann Hypothesis from lectures. Using the explicit formula with T = x
gives ∑

n<x

Λ(n) = x−
∑
|ρ|<x

xρ

ρ
+O(log x)2

|xρ| < xθ for all ρ by assumption, and |ρ| � 1 since ζ(0) 6= 0. If |=(ρ)| ∈
[n, n+ 1] then 1/|ρ| � 1/(n+ 1). Thus∑

n<x

Λ(n) = x+O
(
xθ
∑
n≥0

#{ρ : |=(ρ)| ∈ [n, n+ 1]}
n+ 1

)
+O(log x)2.

We know that the size of the set above is O(log x), and so we find that∑
n<x

Λ(n) = x+O
(
xθ
∑
n≥0

log x

n+ 1

)
+O(log x)2 = x+O(xθ(log x)2).

(ii) By partial summation for <(s) > 1

−ζ
′(s)

ζ(s)
=

∞∑
n=1

Λ(n)n−s = −s
∫ ∞
1

∑
m<t Λ(m)

ts+1
dt

=
−s

1− s
− s

∫ ∞
1

∑
m<t Λ(m)− t

ts+1
dt

We see that since the numerator of the integrand is O(tγ) by assumption,
the integral converges absolutely for <(s) > γ. This gives an analytic
continuation of ζ ′/ζ to <(s) > γ, and so ζ(s) cannot have any zeros in
this region. Hence <(ρ) ≤ γ for all zeros ρ.

(iii) By (ii) we have that for any ε > 0 all zeros ρ have <(ρ) ≤ α + ε. This
means that <(ρ) ≤ α for all zeros ρ. But then by (i) we see that this
means that the error term can actually be taken as xα(log x)2).

Question 4. (i) Show that for <(s) > 1 we have

log ζ(s) =
∑
p

∞∑
m=1

1

mpms
.

(ii) Show that 3 + 4 cos(θ) + cos(2θ) ≥ 0.

(iii) Using (i) and (ii), show that for σ > 1

3 log ζ(σ) + 4< log ζ(σ + it) + <log(ζ(σ + 2it) ≥ 0.

Deduce from this that for σ > 1

ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1.
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(iv) Deduce from the above inequality that ζ(1 + it) 6= 0.
(Hint: Consider σ → 1)

Solution 4. (i) For <(s) > 1 we have

ζ(s) =
∏
p

(
1− 1

ps

)−1
.

Since |ps| < 1 when <(s) > 1, we have that p−s is in the convergent region
of the Taylor expansion log(1− x) = −x− x2/2− x3/3− . . . . Therefore

log ζ(s) =
∑
p

log
(

1− 1

ps

)−1
=
∑
p

∑
m

1

mpms
.

(ii) Since cos(2θ) = 2 cos(θ)2 − 1, we have 3 + 4 cos(θ) + cos(2θ) = 2(cos(θ) +
1)2 ≥ 0.

(iii) We see from (i) that

3 log ζ(σ) + 4< log ζ(σ + it) + <log(ζ(σ + 2it)

=
∑
p

∞∑
m=1

1

mpmσ

(
3 + 4<(p−imt) + <(p−2imt)

)
=
∑
p

∞∑
m=1

1

mpmσ

(
3 + 4 cos(mt log p) + cos(2imt log p)

)
By (ii) this is a sum of non-negative terms. Exponentiating both sides
gives ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| ≥ 1.

(iv) Assume that ζ(1 + it0) = 0 for some t0 6= 0. Then for σ > 1, we have
ζ(σ+ it0) = O(σ− 1). We know that for σ < 2 we have ζ(σ)� 1/(σ− 1).
Finally, ζ has no poles with <(s) ≥ 1 except at s = 1, so ζ(σ + 2it0)� 1.
But then

1 ≤ ζ(σ)3|ζ(σ + it)|4|ζ(σ + 2it)| � (σ − 1)4

(σ − 1)3
� σ − 1.

Letting σ → 1 we get a contradiction.

Question 5. It is a fact that∑
n<x

Λ(n) = x−
∑
ρ

xρ

ρ
− ζ ′(0)

ζ(0)
− 1

2
log(1− x−2).

where the sum is understood to be the limit as T →∞ of
∑
|=(ρ)|≤T x

ρ/ρ over

non-trivial zeros ρ (it is not absolutely convergent).

(i) Using this fact, show that ζ(s) must have at least one non-trivial zero.
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(ii) Show that if ρ is a non-trivial zero of ζ(s), then so is 1− ρ.

(iii) Let ε > 0. Using Question 3, deduce that we cannot have for all x ≥ 2
that ∑

n<x

Λ(n) = x+O(x1/2−ε).

Solution 5. (i) If ζ(s) has no non-trivial zeros, then we would find that∑
n<x

Λ(n) = x− ζ ′(0)

ζ(0)
− 1

2
log(1− x−2).

But the right hand side is continuous, whereas the left hand side is not
continuous at primes, so this is impossible.

(ii) If ρ is a zero of ζ(s), then so is 1− ρ by the functional equation.

(iii) We know ζ(s) must have a non-trivial zero ρ, and so also have 1− ρ. But
we have max(<(ρ),<(1− ρ)) ≥ 1/2, so one has real part at least 1/2. But
by Question 3, this means we cannot have

∑
n<x Λ(n) = x + O(x1/2−ε),

since then all zeros would have real part at most 1/2− ε.

Question 6. Recall from Sheet 3 Q6: If f : R → C is smooth and non-zero
only on some interval [α, β] ⊆ (0,∞) then for any σ ∈ R

f
(n
y

)
=

1

2πi

∫ σ+i∞

σ−i∞
F (s)

ys

ns
ds,

where F (s) =
∫∞
0
f(x)xs−1dx is a smooth function with |F (σ + it)| � 1/|t|100

and with no zeros or poles.

(i) Show that

∞∑
n=1

Λ(n)f
(n
y

)
=
−1

2πi

∫ 2+i∞

2−i∞
ysF (s)

ζ ′(s)

ζ(s)
ds.

(ii) Deduce that

∞∑
n=1

Λ(n)f
(n
y

)
= y

∫ ∞
0

f(t)dt−
∑
ρ

yρF (ρ) +O(y−1/4)

where
∑
ρ is a sum over all non-trivial zeros of ζ(s) with multiplicity.

Solution 6. (i) We choose σ = 2 and us the Mellin inversion formula for f :

∞∑
n=1

Λ(n)f
(n
y

)
=

1

2πi

∞∑
n=1

Λ(n)

∫ 2+i∞

2−i∞

ysF (s)

ns
ds.

Since |F (s)| � 1/|s|2 and |n−s| � 1/n2, the above converges abso-
lutely so we may change the order of summation and integration. Since
−ζ ′(s)/ζ(s) =

∑∞
n=1 Λ(n)n−s, this gives the result.
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(ii) As in Lectures, we may choose T ∈ [T1, T1 + 1] such that no zeros ρ
have ||=(ρ) − T | ≤ 1/(log T )2 if T1 is large enough. By Cauchy’s residue
theorem

1

2πi

(∫ −1/4−iT
−1/4+iT

+

∫ 2−iT

−1/4−iT
+

∫ 2+iT

2−iT
+

∫ −1/4+iT
2+iT

)
ysF (s)

ζ ′(s)

ζ(s)
ds = −yF (1)+

∑
ρ

yρF (ρ),

since ζ ′/ζ(s) has a simple pole at s = 1 with residue -1, and simple poles
at s = ρ with residue mρ (multiplicity of zero), and ysF (s) has no poles.

We have F (s) � 1/|s|100 and |ys| = y<(s). Since we stay away from zeos
of ζ(s), we have that ζ ′(s)/ζ(s) � log(2 + |s|)3 along all the contours
above. We see that the first contour contributes

� y−1/4
∫ T

−T

log(2 + |t|)3

(1/4 + t)100
dt� y−1/4

The second and fourth contours contribute � y2(log T )3/T 100. Thus,
letting T →∞, we see that∫ 2+i∞

2−i∞
ysF (s)

ζ ′(s)

ζ(s)
ds = −yF (1) +

∑
ρ

yρF (ρ) +O(y−1/4).

Using (i), this gives the result, noting that F (1) =
∫∞
0
f(t)dt.

Question 7. For this question you may use the following fact: |ζ(σ + it)| �
|t|1−σ log |t| for σ ≤ 1 and |t| ≥ 1.

(i) Show using Perron’s formula that for 2 ≤ T ≤ 2x∑
n<x

µ(n)2φ(n)

n
=

1

2πi

∫ c+iT

c−iT

xs

s
ζ(s)Z(s)ds+O

(x(log x)3

T

)
,

where c = 1 + 1/ log x and for <(s) > 1

Z(s) =
∏
p

(
1− 1

p2s
− 1

ps+1
+

1

p2s+1

)
.

(ii) Show that the product of for Z(s) converges absolutely for <(s) > 1/2.

(iii) Let ε = 1/1000. By moving the line of integration to <(s) = 1/2+ ε, show
that∑
n<x

µ(n)2φ(n)

n
= x

∏
p

(
1− 2

p2
+

1

p3

)
+O
(
x1/2+εT 1/2−ε log x

)
+O
(x(log x)3

T

)
(iv) Deduce that∑

n<x

µ(n)2φ(n)

n
= x

∏
p

(
1− 2

p2
+

1

p3

)
+O

(
x2/3+ε

)
.
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Solution 7. (i) Since φ(n)/n < 1, by Perron’s formula

∑
n<x

µ(n)2φ(n)

n
=

1

2πi

∫ c+iT

c−iT

xs

s
G(s)ds+O

(x(log x)3

T

)
,

where for <(s) > 1

G(s) =

∞∑
n=1

µ(n)2φ(n)

n1+s
=
∏
p

(
1 +

p− 1

p1+s

)
.

We see that(
1 +

p− 1

p1+s

)(
1− 1

ps

)
= 1 +

1

p1+2s
− 1

p1+s
− 1

p2s
.

Therefore, dividing through by 1− p−s and taking the product over p, we
find for <(s) > 1 that G(s) = ζ(s)Z(s).

(ii) For 1 ≥ σ = <(s) > 1/2 we have |1−p−2s−p−1−s+p−1−2s| ≤ 1+3p−2<(s)).
Therefore∏
p

∣∣∣1+
1

p1+2s
− 1

p1+s
− 1

p2s

∣∣∣ ≤ exp
(∑

p

log(1+3p−2σ)
)
≤ exp

(∑
p

O(p−2σ)
)
.

This converges for <(s) > 1/2.

(iii) Since Z(s) converges for <(s) > 1/2, we see that xsZ(s)/s has no poles in
the region <(s) ≥ 1/2 + ε, and ζ(s) just has a simple pole at s = 1 (with
residue 1). Therefore, by Cauchy’s residue theorem

1

2πi

(∫ 1/2+ε−iT

1/2+ε+iT

+

∫ c−iT

1/2+ε−iT
+

∫ c+iT

c−iT
+

∫ 1/2+ε+iT

c+iT

)xs
s
ζ(s)Z(s)ds = xZ(1).

Throughout the region of integration Z(s) = O(1). In the second and
fourth integrals, |ζ(s)| � T 1−σ log T , |xs| � xσ and |1/s| � 1/T . There-
fore, since T � x, these integrals contribute

� log x

∫ c

−1/4

( x
T

)σ
dσ � xc log x

T c
� x log x

T
.

In the first integral, ζ(s)� (1 + |t|)1/2−ε log x, |xs| � x1/2+ε and |1/s| �
1/(1 + |t|). Therefore this integral contributes

� x1/2+ε log x

∫ T

−T

dt

(1 + |t|)1/2+ε
� x1/2+εT 1/2−ε log x.

Putting this together, and noting Z(1) =
∏
p(1 − 2/p2 + 3/p3) gives the

result.

6



(iv) Choose T = x1/3 in for part (iii)

Question 8. Recall from Sheet 3 Q6: If f : R → C is smooth and non-zero
only on some interval [α, β] ⊆ (0,∞) then for any σ ∈ R

f
(n
y

)
=

1

2πi

∫ σ+i∞

σ−i∞
F (s)

ys

ns
ds,

where F (s) =
∫∞
0
f(x)xs−1dx is a smooth function with |F (σ + it)| � 1/|t|100.

(i) Show that

∞∑
n=1

µ(n)2φ(n)

n
f
(n
y

)
=

1

2πi

∫ 2+i∞

2−i∞
ysF (s)ζ(s)Z(s)ds

where Z(s) is the function appearing in Question 7.

(ii) Fix ε > 0. Show that

∞∑
n=1

µ(n)2φ(n)

n
f
(n
y

)
= y
(∫ ∞

0

f(x)dx
)∏

p

(
1− 2

p2
+

1

p3

)
+O(y1/2+ε)

(Compare the answer here to that in Question 7)

Solution 8. (i) We choose σ = 2 and apply the Mellin inversion statement
to get

∞∑
n=1

µ(n)2φ(n)

n
f
(n
y

)
=

1

2πi

∞∑
n=1

µ(n)2φ(n)

n

∫ 2+i∞

2−i∞
F (s)

ys

ns
ds

Since <(s) ≥ 2 we have |n−s| � 1/n2 and |F (s)| � 1/|s|2, so the above
expression converges absolutely, and so we may swap the order of summa-
tion and integration. This gives

∞∑
n=1

µ(n)2φ(n)

n
f
(n
y

)
=

1

2πi

∫ 2+i∞

2−i∞
ysF (s)

( ∞∑
n=1

µ(n)2φ(n)

n1+s

)
ds

Recalling that
∑
n µ(n)2φ(n)/n1+s = ζ(s)Z(s) from the previous question

gives the result.

(ii) As before, we move the line of integration to <(s) = 1/2+ε using Cauchy’s
residue Theorem. The only pole is at s = 1.

1

2πi

(∫ 1/2+ε−iT

1/2+ε+iT

+

∫ 2−iT

1/2+ε−iT
+

∫ 2+iT

2−iT
+

∫ 1/2+ε+iT

2+iT

)
ysF (s)ζ(s)Z(s)ds = yZ(1)F (1).

On the second and fourth integrals ζ(s) � T , ys � y2, Z(s) � 1 and
F (s) � 1/T 100 so the contribution is O(x/T 99). On the first integral

7



|ys| � y1/2+ε, |ζ(s)| � |s|, |Z(s)| � 1 and |F (s)| � 1/|s|100, so the
contribution is O(y1/2+ε). Thus, letting T →∞ we find

1

23πi

∫ 2+i∞

2−i∞
ysF (s)ζ(s)Z(s)ds = yZ(1)F (1) +O(y1/2+ε).

Question 9 (Bonus Question). Let σ(n) =
∑
d|n d be the sum of divisors of

n. Following the approach of Question 7 or Question 8, obtain an asymptotic
formula for

∑
n<x µ(n)2σ(n) or

∑
n µ(n)2σ(n)f(n/y).

Solution 9. We just give the argument for
∑
n µ(n)2σ(n)f(n/y); the argument

for the other case is essentially the same.
Note that σ(n) ≤ nτ(n) = n1+o(1). Thus, using Mellin inversion and swap-

ping the order of summation and integration as in the previous question, we
have that

∞∑
n=1

µ(n)2σ(n)f
(n
y

)
=

1

2πi

∫ 3+i∞

3−i∞
ysF (s)

( ∞∑
n=1

µ(n)2σ(n)

ns

)
ds.

We may swap the order of summation since |σ(n)/ns| � 1/n3/2 when <(s) = 3,
so everything converges absolutely. We have that for <(s) > 2

G(s) =

∞∑
n=1

µ(n)2σ(n)

ns
=
∏
p

(
1 +

p+ 1

ps

)
(

1 +
p+ 1

ps

)(
1− 1

ps−1

)
= 1− 1

p2s−2
+

1

ps
− 1

p2s−1
,

so G(s) = ζ(s− 1)Z(s) where

Z(s) =
∏
p

(
1− 1

p2s−2
+

1

ps
− 1

p2s−1

)
,

and since |1− p−2s+2 + p−s − p−2s+1| ≤ 1 + 3p−2σ+2 for σ = <(s) < 2, we have
that

|Z(s)| � exp
(∑

p

log
(

1 + 3p−2σ+2
))
� exp

(∑
p

O(p−2σ+2)
)
,

so Z(s) converges absolutely for <(s) > 3/2. Thus we want to estimate

1

2πi

∫ 3+i∞

3−i∞
ysF (s)Z(s)ζ(s− 1)ds.

We move the line of integration to <(s) = 3/2 + ε. The only pole of the
integrand is from ζ(s− 1) at s = 2. by Cauchy’s residue theorem

1

2πi

(∫ 3/2+ε−iT

3/2+ε+iT

+

∫ 3−iT

3/2+ε−iT
+

∫ 3+iT

3−iT
+

∫ 3/2+ε+iT

3+iT

)
ysF (s)ζ(s−1)Z(s)ds = y2Z(2)F (2).
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On the second and fourth contours, |ys| � y3, |ζ(s − 1)| � T , |Z(s)| � 1
and |F (s)| � T−100, so these contribute O(y3T−99). On the first contour
|ys| � y3/2, |ζ(s− 1)| � (1 + |s|), |Z(s)| � 1 and |F (s)| � (1 + |s|)−100, so this
contributes O(y3/2). Letting T →∞ then gives

1

2πi

∫ 3+i∞

3−i∞
ysF (s)ζ(s− 1)Z(s)ds = y2F (2)Z(2) +O(y3/2).

This gives the desired asymptotic formula.

Question 10 (Bonus Question). Let Ψ(x, y) = {n ≤ x : p|n ⇒ p ≤ y} be the
set of integers up to x which only involve prime factors of size at most y.

(i) Let α ∈ (0, 1) be fixed. Show that as x→∞∑
xα≤p≤x

1

p
= log

1

α
+ o(1).

(ii) Show that for x1/2 ≤ y ≤ x we have

Ψ(x, y) =
(

1− log
( log x

log y

)
+ o(1)

)
x.

(iii) Show that for any x ≥ 1 and z ≥ y > 0

Ψ(x, y) = Ψ(x, z)−
∑

p<y≤z

Ψ
(x
p
, p
)
.

(iv) Deduce that for x1/3 ≤ y ≤ x1/2

Ψ(x, y) =
(

1− log 2−
∫ log x/ log y

2

1

v

(
1− log(v − 1)

)
dv + o(1)

)
x

(v) Define a function ρ : [0,∞)→ R by ρ(u) = 1 if u ≤ 1 and for u > 1

ρ(u) = 1−
∫ u

1

ρ(t− 1)
dt

t
.

Show that parts (ii) and (iv) imply that for u ≤ 3

Ψ(x, x1/u) = (ρ(u) + o(1))x.

(vi) Show by induction that if

Ψ(x, x1/u) = (ρ(u) + o(1))x

for u ≤ m, then the same equation holds for u ≤ m+ 1. Deduce that for
any fixed u > 0 we have

Ψ(x, x1/u) = (ρ(u) + o(1))x.
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Solution 10. (i) This follows from partial summation and the prime number
theorem. Actually it only requires Mertens’ Theorem: we have

∑
p<x 1/p =

log log x − C + o(1), so
∑
xα<p<x 1/p = log log x − log log xα + o(1) =

log 1/α+ o(1).

(ii) A number has at most one prime factor bigger than y > x1/2, so by
inclusion-exclusion

Ψ(x, y) = #{n ≤ x} −
∑

y<p≤x

#{n ≤ x : p|n} = x+O(1)−
∑

y<p≤x

(x
p

+O(1)
)

= x
(

1 + o(1)−
∑

y<p≤x

1

p

)
= x

(
1− log x

log y
+ o(1)

)
.

(iii) Again this is inclusion-exclusion based on the largest prime factor P+(n)
of n.

Ψ(x, y) =
∑
n≤x

P+(n)≤y

1 =
∑
n≤x

P+(n)≤z

1−
∑
n≤x

y<P+(n)≤z

1 = Ψ(x, z)−
∑

y<p≤z

#{n ≤ x : P+(n) = p}.

But, since the last set contains elements which are a multiple of p, we see
that #{n ≤ x : P+(n) = p} = #{m ≤ x/p : P (m) ≤ p} = Ψ(x/p, p).

(iv) Let z = x1/2, and apply the above identity. We have

Ψ(x, y) = Ψ(x, x1/2)−
∑

y≤p≤x1/2

Ψ
(x
p
, p
)
.

We now see that since y ≥ x1/3 we have p ≥ (x/p)1/2 for all p in the above
sum, so we may apply (ii). This gives

Ψ(x, y) =
(

1− log 2 + o(1)
)
x−

∑
y≤p≤x1/2

(
1− log

( log x/p

log p

)
+ o(1)

)x
p
.

By partial summation∑
y≤p≤x1/2

(
1− log

( log x/p

p

))x
p

= x

∫ x1/2

y

1

t log t

(
1− log

( log x/t

log t

))
dt+ o(x)

= x

∫ log x/ log y

2

1

v

(
1− log(v − 1)

)
dv.

(We made a change of variables v = log x/ log p in the last line). This
gives the result.

(v) Since ρ(1) = 1 for u ≤ 1, the result is trivial for u ≤ 1. We then see
ρ(u) = 1 −

∫ u
1
dt/t = 1 − log u for 1 ≤ u ≤ 2, so this agrees with (ii).

Finally, for 2 ≤ u ≤ 3 we see that

ρ(u) = 1−
∫ u

1

ρ(t− 1)

t
dt = ρ(2)−

∫ u

2

ρ(t− 1)dt

t
= ρ(2)−

∫ u

2

(
1−log(t−1)

)dt
t
,
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so this agrees with (iv).

(vi) Assume that for u ≤ m we have Ψ(x, x1/u) = (ρ(u) + o(1))x. Then by
(iii),

Ψ(x, x1/(u+1)) = Ψ(x, x1/u)−
∑

x1/(u+1)≤p≤x1/u

Ψ
(x
p
, p
)
.

But if p ≥ x1/(u+1), we have pu ≥ x/p, so if u ≤ m we have

Ψ(x/p, p) =
(
ρ
( log x/p

log p
+ o(1)

)x
p
.

Thus

Ψ(x, x1/(u+1)) =
(
ρ(u) + o(1)

)
x−

∑
x1/(u+1)≤p≤x1/u

(
ρ
( log x/p

log p
+ o(1)

)x
p

= x
(
ρ(u) + o(1)−

∫ x1/u

x1/(u+1)

1

t log t
ρ
( log x/t

log t

)
dt
)

= x
(
ρ(u) + o(1)−

∫ u+1

u

1

v
ρ(v − 1)dv

)
.

Here we substituted v = log x/ log t in the final line. But from the defini-
tion of ρ, for u ≥ 2

ρ(u+ 1) = 1−
∫ u+1

1

ρ(t− 1)

t
dt = ρ(u)−

∫ u+1

u

ρ(v − 1)

v
dv,

so the above expression is x(ρ(u + 1) + o(1)), as required. Therefore we
see that if the formula holds for u ≤ m, it also holds for u ≤ m+ 1.
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