Question 1. Prove that $\pi(X) \leqslant 2 \pi(X / 2)$ for X sufficiently large.
Solution 1. By the PNT, $\pi(x)=x / \log x+x /(\log x)^{2}+O\left(x /(\log x)^{3}\right)$, so

$$
2 \pi(X / 2)=\frac{X}{\log X-\log 2}+\frac{X}{\log ^{2} X}+O\left(\frac{X}{\log ^{3} X}\right)
$$

But

$$
\frac{X}{\log X-\log 2}=\frac{X}{\log X}\left(1+\frac{\log 2}{\log X}+O\left(\frac{1}{\log ^{2} X}\right)\right)
$$

which is bigger than the expression for $\pi(X)$ when X is large enough.
Question 2. Let p_{n} denote the $n^{\text {th }}$ prime. Prove that

$$
p_{n}=n \log n+n \log \log n+O(n)
$$

Solution 2. Since $n=\pi\left(p_{n}\right)$ and $\pi(x) \sim x / \log x$, we have $n \log n=\pi\left(p_{n}\right) \log \left(\pi\left(p_{n}\right)\right) \sim$ p_{n} so $p_{n}=(1+o(1)) n \log n$. In particular, $\log p_{n}=\log n+\log \log n+o(1)$. Therefore

$$
n=\pi\left(p_{n}\right)=\frac{p_{n}}{\log p_{n}}+O\left(\frac{p_{n}}{\left(\log p_{n}\right)^{2}}\right)=\frac{p_{n}}{\log n+\log \log n+o(1)}\left(1+O\left(\frac{1}{\log n}\right)\right)
$$

This gives

$$
\begin{aligned}
p_{n} & =(n \log n+n \log \log n+o(n))(1+O(1 / \log n)) \\
& =n \log n+n \log \log n+O(n)
\end{aligned}
$$

Question 3. (i) Let $\theta \in(0,1)$ be such that $\Re(\rho) \leq \theta$ for all non-trivial zeros ρ. Deduce that for all $x \geq 2$

$$
\sum_{n<x} \Lambda(n)=x+O\left(x^{\theta}(\log x)^{2}\right)
$$

(ii) Let $\gamma \in(0,1)$ be such that for all $x \geq 2$

$$
\sum_{n<x} \Lambda(n)=x+O\left(x^{\gamma}\right)
$$

Show that $\Re(\rho) \leq \gamma$ for all zeros of $\zeta(s)$.
(Hint: Use partial summation to prove analytic continuation of ζ^{\prime} / ζ)
(iii) Let $\alpha \in(0,1)$ be fixed. Show that if for all $x \geq 2$ we have

$$
\sum_{n<x} \Lambda(n)=x+O\left(x^{\alpha} \exp (\sqrt{\log x})\right)
$$

then in fact

$$
\sum_{n<x} \Lambda(n)=x+O\left(x^{\alpha}(\log x)^{2}\right)
$$

Solution 3. (i) This is the same as the proof of the error term under the Riemann Hypothesis from lectures. Using the explicit formula with $T=x$ gives

$$
\sum_{n<x} \Lambda(n)=x-\sum_{|\rho|<x} \frac{x^{\rho}}{\rho}+O(\log x)^{2}
$$

$\left|x^{\rho}\right|<x^{\theta}$ for all ρ by assumption, and $|\rho| \gg 1$ since $\zeta(0) \neq 0$. If $|\Im(\rho)| \in$ $[n, n+1]$ then $1 /|\rho| \ll 1 /(n+1)$. Thus

$$
\sum_{n<x} \Lambda(n)=x+O\left(x^{\theta} \sum_{n \geq 0} \frac{\#\{\rho:|\Im(\rho)| \in[n, n+1]\}}{n+1}\right)+O(\log x)^{2}
$$

We know that the size of the set above is $O(\log x)$, and so we find that

$$
\sum_{n<x} \Lambda(n)=x+O\left(x^{\theta} \sum_{n \geq 0} \frac{\log x}{n+1}\right)+O(\log x)^{2}=x+O\left(x^{\theta}(\log x)^{2}\right)
$$

(ii) By partial summation for $\Re(s)>1$

$$
\begin{aligned}
-\frac{\zeta^{\prime}(s)}{\zeta(s)}=\sum_{n=1}^{\infty} \Lambda(n) n^{-s} & =-s \int_{1}^{\infty} \frac{\sum_{m<t} \Lambda(m)}{t^{s+1}} d t \\
& =\frac{-s}{1-s}-s \int_{1}^{\infty} \frac{\sum_{m<t} \Lambda(m)-t}{t^{s+1}} d t
\end{aligned}
$$

We see that since the numerator of the integrand is $O\left(t^{\gamma}\right)$ by assumption, the integral converges absolutely for $\Re(s)>\gamma$. This gives an analytic continuation of ζ^{\prime} / ζ to $\Re(s)>\gamma$, and so $\zeta(s)$ cannot have any zeros in this region. Hence $\Re(\rho) \leq \gamma$ for all zeros ρ.
(iii) By (ii) we have that for any $\epsilon>0$ all zeros ρ have $\Re(\rho) \leq \alpha+\epsilon$. This means that $\Re(\rho) \leq \alpha$ for all zeros ρ. But then by (i) we see that this means that the error term can actually be taken as $\left.x^{\alpha}(\log x)^{2}\right)$.

Question 4. (i) Show that for $\Re(s)>1$ we have

$$
\log \zeta(s)=\sum_{p} \sum_{m=1}^{\infty} \frac{1}{m p^{m s}} .
$$

(ii) Show that $3+4 \cos (\theta)+\cos (2 \theta) \geq 0$.
(iii) Using (i) and (ii), show that for $\sigma>1$

$$
3 \log \zeta(\sigma)+4 \Re \log \zeta(\sigma+i t)+\Re \log (\zeta(\sigma+2 i t) \geq 0 .
$$

Deduce from this that for $\sigma>1$

$$
\zeta(\sigma)^{3}|\zeta(\sigma+i t)|^{4}|\zeta(\sigma+2 i t)| \geq 1
$$

(iv) Deduce from the above inequality that $\zeta(1+i t) \neq 0$.
(Hint: Consider $\sigma \rightarrow 1$)
Solution 4. (i) For $\Re(s)>1$ we have

$$
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

Since $\left|p^{s}\right|<1$ when $\Re(s)>1$, we have that p^{-s} is in the convergent region of the Taylor expansion $\log (1-x)=-x-x^{2} / 2-x^{3} / 3-\ldots$. Therefore

$$
\log \zeta(s)=\sum_{p} \log \left(1-\frac{1}{p^{s}}\right)^{-1}=\sum_{p} \sum_{m} \frac{1}{m p^{m s}}
$$

(ii) Since $\cos (2 \theta)=2 \cos (\theta)^{2}-1$, we have $3+4 \cos (\theta)+\cos (2 \theta)=2(\cos (\theta)+$ $1)^{2} \geq 0$.
(iii) We see from (i) that

$$
\begin{aligned}
& 3 \log \zeta(\sigma)+4 \Re \log \zeta(\sigma+i t)+\Re \log (\zeta(\sigma+2 i t) \\
& =\sum_{p} \sum_{m=1}^{\infty} \frac{1}{m p^{m \sigma}}\left(3+4 \Re\left(p^{-i m t}\right)+\Re\left(p^{-2 i m t}\right)\right) \\
& =\sum_{p} \sum_{m=1}^{\infty} \frac{1}{m p^{m \sigma}}(3+4 \cos (m t \log p)+\cos (2 i m t \log p))
\end{aligned}
$$

By (ii) this is a sum of non-negative terms. Exponentiating both sides gives $\zeta(\sigma)^{3}|\zeta(\sigma+i t)|^{4}|\zeta(\sigma+2 i t)| \geq 1$.
(iv) Assume that $\zeta\left(1+i t_{0}\right)=0$ for some $t_{0} \neq 0$. Then for $\sigma>1$, we have $\zeta\left(\sigma+i t_{0}\right)=O(\sigma-1)$. We know that for $\sigma<2$ we have $\zeta(\sigma) \ll 1 /(\sigma-1)$. Finally, ζ has no poles with $\Re(s) \geq 1$ except at $s=1$, so $\zeta\left(\sigma+2 i t_{0}\right) \ll 1$. But then

$$
1 \leq \zeta(\sigma)^{3}|\zeta(\sigma+i t)|^{4}|\zeta(\sigma+2 i t)| \ll \frac{(\sigma-1)^{4}}{(\sigma-1)^{3}} \ll \sigma-1
$$

Letting $\sigma \rightarrow 1$ we get a contradiction.
Question 5. It is a fact that

$$
\sum_{n<x} \Lambda(n)=x-\sum_{\rho} \frac{x^{\rho}}{\rho}-\frac{\zeta^{\prime}(0)}{\zeta(0)}-\frac{1}{2} \log \left(1-x^{-2}\right)
$$

where the sum is understood to be the limit as $T \rightarrow \infty$ of $\sum_{|\Im(\rho)| \leq T} x^{\rho} / \rho$ over non-trivial zeros ρ (it is not absolutely convergent).
(i) Using this fact, show that $\zeta(s)$ must have at least one non-trivial zero.
(ii) Show that if ρ is a non-trivial zero of $\zeta(s)$, then so is $1-\rho$.
(iii) Let $\epsilon>0$. Using Question 3, deduce that we cannot have for all $x \geq 2$ that

$$
\sum_{n<x} \Lambda(n)=x+O\left(x^{1 / 2-\epsilon}\right)
$$

Solution 5. (i) If $\zeta(s)$ has no non-trivial zeros, then we would find that

$$
\sum_{n<x} \Lambda(n)=x-\frac{\zeta^{\prime}(0)}{\zeta(0)}-\frac{1}{2} \log \left(1-x^{-2}\right)
$$

But the right hand side is continuous, whereas the left hand side is not continuous at primes, so this is impossible.
(ii) If ρ is a zero of $\zeta(s)$, then so is $1-\rho$ by the functional equation.
(iii) We know $\zeta(s)$ must have a non-trivial zero ρ, and so also have $1-\rho$. But we have $\max (\Re(\rho), \Re(1-\rho)) \geq 1 / 2$, so one has real part at least $1 / 2$. But by Question 3, this means we cannot have $\sum_{n<x} \Lambda(n)=x+O\left(x^{1 / 2-\epsilon}\right)$, since then all zeros would have real part at most $1 / 2-\epsilon$.

Question 6. Recall from Sheet 3 Q6: If $f: \mathbb{R} \rightarrow \mathbb{C}$ is smooth and non-zero only on some interval $[\alpha, \beta] \subseteq(0, \infty)$ then for any $\sigma \in \mathbb{R}$

$$
f\left(\frac{n}{y}\right)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} F(s) \frac{y^{s}}{n^{s}} d s
$$

where $F(s)=\int_{0}^{\infty} f(x) x^{s-1} d x$ is a smooth function with $|F(\sigma+i t)| \ll 1 /|t|^{100}$ and with no zeros or poles.
(i) Show that

$$
\sum_{n=1}^{\infty} \Lambda(n) f\left(\frac{n}{y}\right)=\frac{-1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} y^{s} F(s) \frac{\zeta^{\prime}(s)}{\zeta(s)} d s
$$

(ii) Deduce that

$$
\sum_{n=1}^{\infty} \Lambda(n) f\left(\frac{n}{y}\right)=y \int_{0}^{\infty} f(t) d t-\sum_{\rho} y^{\rho} F(\rho)+O\left(y^{-1 / 4}\right)
$$

where \sum_{ρ} is a sum over all non-trivial zeros of $\zeta(s)$ with multiplicity.
Solution 6. (i) We choose $\sigma=2$ and us the Mellin inversion formula for f :

$$
\sum_{n=1}^{\infty} \Lambda(n) f\left(\frac{n}{y}\right)=\frac{1}{2 \pi i} \sum_{n=1}^{\infty} \Lambda(n) \int_{2-i \infty}^{2+i \infty} \frac{y^{s} F(s)}{n^{s}} d s
$$

Since $|F(s)| \ll 1 /|s|^{2}$ and $\left|n^{-s}\right| \ll 1 / n^{2}$, the above converges absolutely so we may change the order of summation and integration. Since $-\zeta^{\prime}(s) / \zeta(s)=\sum_{n=1}^{\infty} \Lambda(n) n^{-s}$, this gives the result.
(ii) As in Lectures, we may choose $T \in\left[T_{1}, T_{1}+1\right]$ such that no zeros ρ have $\left||\Im(\rho)-T| \leq 1 /(\log T)^{2}\right.$ if T_{1} is large enough. By Cauchy's residue theorem

$$
\frac{1}{2 \pi i}\left(\int_{-1 / 4+i T}^{-1 / 4-i T}+\int_{-1 / 4-i T}^{2-i T}+\int_{2-i T}^{2+i T}+\int_{2+i T}^{-1 / 4+i T}\right) y^{s} F(s) \frac{\zeta^{\prime}(s)}{\zeta(s)} d s=-y F(1)+\sum_{\rho} y^{\rho} F(\rho)
$$

since $\zeta^{\prime} / \zeta(s)$ has a simple pole at $s=1$ with residue -1 , and simple poles at $s=\rho$ with residue m_{ρ} (multiplicity of zero), and $y^{s} F(s)$ has no poles.
We have $F(s) \ll 1 /|s|^{100}$ and $\left|y^{s}\right|=y^{\Re(s)}$. Since we stay away from zeos of $\zeta(s)$, we have that $\zeta^{\prime}(s) / \zeta(s) \ll \log (2+|s|)^{3}$ along all the contours above. We see that the first contour contributes

$$
\ll y^{-1 / 4} \int_{-T}^{T} \frac{\log (2+|t|)^{3}}{(1 / 4+t)^{100}} d t \ll y^{-1 / 4}
$$

The second and fourth contours contribute $\ll y^{2}(\log T)^{3} / T^{100}$. Thus, letting $T \rightarrow \infty$, we see that

$$
\int_{2-i \infty}^{2+i \infty} y^{s} F(s) \frac{\zeta^{\prime}(s)}{\zeta(s)} d s=-y F(1)+\sum_{\rho} y^{\rho} F(\rho)+O\left(y^{-1 / 4}\right) .
$$

Using (i), this gives the result, noting that $F(1)=\int_{0}^{\infty} f(t) d t$.
Question 7. For this question you may use the following fact: $|\zeta(\sigma+i t)| \ll$ $|t|^{1-\sigma} \log |t|$ for $\sigma \leq 1$ and $|t| \geq 1$.
(i) Show using Perron's formula that for $2 \leq T \leq 2 x$

$$
\sum_{n<x} \frac{\mu(n)^{2} \phi(n)}{n}=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{x^{s}}{s} \zeta(s) Z(s) d s+O\left(\frac{x(\log x)^{3}}{T}\right)
$$

where $c=1+1 / \log x$ and for $\Re(s)>1$

$$
Z(s)=\prod_{p}\left(1-\frac{1}{p^{2 s}}-\frac{1}{p^{s+1}}+\frac{1}{p^{2 s+1}}\right)
$$

(ii) Show that the product of for $Z(s)$ converges absolutely for $\Re(s)>1 / 2$.
(iii) Let $\epsilon=1 / 1000$. By moving the line of integration to $\Re(s)=1 / 2+\epsilon$, show that

$$
\sum_{n<x} \frac{\mu(n)^{2} \phi(n)}{n}=x \prod_{p}\left(1-\frac{2}{p^{2}}+\frac{1}{p^{3}}\right)+O\left(x^{1 / 2+\epsilon} T^{1 / 2-\epsilon} \log x\right)+O\left(\frac{x(\log x)^{3}}{T}\right)
$$

(iv) Deduce that

$$
\sum_{n<x} \frac{\mu(n)^{2} \phi(n)}{n}=x \prod_{p}\left(1-\frac{2}{p^{2}}+\frac{1}{p^{3}}\right)+O\left(x^{2 / 3+\epsilon}\right)
$$

Solution 7. (i) Since $\phi(n) / n<1$, by Perron's formula

$$
\sum_{n<x} \frac{\mu(n)^{2} \phi(n)}{n}=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{x^{s}}{s} G(s) d s+O\left(\frac{x(\log x)^{3}}{T}\right)
$$

where for $\Re(s)>1$

$$
G(s)=\sum_{n=1}^{\infty} \frac{\mu(n)^{2} \phi(n)}{n^{1+s}}=\prod_{p}\left(1+\frac{p-1}{p^{1+s}}\right) .
$$

We see that

$$
\left(1+\frac{p-1}{p^{1+s}}\right)\left(1-\frac{1}{p^{s}}\right)=1+\frac{1}{p^{1+2 s}}-\frac{1}{p^{1+s}}-\frac{1}{p^{2 s}}
$$

Therefore, dividing through by $1-p^{-s}$ and taking the product over p, we find for $\Re(s)>1$ that $G(s)=\zeta(s) Z(s)$.
(ii) For $1 \geq \sigma=\Re(s)>1 / 2$ we have $\left.\left|1-p^{-2 s}-p^{-1-s}+p^{-1-2 s}\right| \leq 1+3 p^{-2 \Re(s)}\right)$. Therefore

$$
\prod_{p}\left|1+\frac{1}{p^{1+2 s}}-\frac{1}{p^{1+s}}-\frac{1}{p^{2 s}}\right| \leq \exp \left(\sum_{p} \log \left(1+3 p^{-2 \sigma}\right)\right) \leq \exp \left(\sum_{p} O\left(p^{-2 \sigma}\right)\right)
$$

This converges for $\Re(s)>1 / 2$.
(iii) Since $Z(s)$ converges for $\Re(s)>1 / 2$, we see that $x^{s} Z(s) / s$ has no poles in the region $\Re(s) \geq 1 / 2+\epsilon$, and $\zeta(s)$ just has a simple pole at $s=1$ (with residue 1). Therefore, by Cauchy's residue theorem

$$
\frac{1}{2 \pi i}\left(\int_{1 / 2+\epsilon+i T}^{1 / 2+\epsilon-i T}+\int_{1 / 2+\epsilon-i T}^{c-i T}+\int_{c-i T}^{c+i T}+\int_{c+i T}^{1 / 2+\epsilon+i T}\right) \frac{x^{s}}{s} \zeta(s) Z(s) d s=x Z(1)
$$

Throughout the region of integration $Z(s)=O(1)$. In the second and fourth integrals, $|\zeta(s)| \ll T^{1-\sigma} \log T,\left|x^{s}\right| \ll x^{\sigma}$ and $|1 / s| \ll 1 / T$. Therefore, since $T \ll x$, these integrals contribute

$$
\ll \log x \int_{-1 / 4}^{c}\left(\frac{x}{T}\right)^{\sigma} d \sigma \ll \frac{x^{c} \log x}{T^{c}} \ll \frac{x \log x}{T} .
$$

In the first integral, $\zeta(s) \ll(1+|t|)^{1 / 2-\epsilon} \log x,\left|x^{s}\right| \ll x^{1 / 2+\epsilon}$ and $|1 / s| \ll$ $1 /(1+|t|)$. Therefore this integral contributes

$$
\ll x^{1 / 2+\epsilon} \log x \int_{-T}^{T} \frac{d t}{(1+|t|)^{1 / 2+\epsilon}} \ll x^{1 / 2+\epsilon} T^{1 / 2-\epsilon} \log x
$$

Putting this together, and noting $Z(1)=\prod_{p}\left(1-2 / p^{2}+3 / p^{3}\right)$ gives the result.
(iv) Choose $T=x^{1 / 3}$ in for part (iii)

Question 8. Recall from Sheet 3 Q6: If $f: \mathbb{R} \rightarrow \mathbb{C}$ is smooth and non-zero only on some interval $[\alpha, \beta] \subseteq(0, \infty)$ then for any $\sigma \in \mathbb{R}$

$$
f\left(\frac{n}{y}\right)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} F(s) \frac{y^{s}}{n^{s}} d s
$$

where $F(s)=\int_{0}^{\infty} f(x) x^{s-1} d x$ is a smooth function with $|F(\sigma+i t)| \ll 1 /|t|^{100}$.
(i) Show that

$$
\sum_{n=1}^{\infty} \frac{\mu(n)^{2} \phi(n)}{n} f\left(\frac{n}{y}\right)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} y^{s} F(s) \zeta(s) Z(s) d s
$$

where $Z(s)$ is the function appearing in Question 7.
(ii) Fix $\epsilon>0$. Show that

$$
\sum_{n=1}^{\infty} \frac{\mu(n)^{2} \phi(n)}{n} f\left(\frac{n}{y}\right)=y\left(\int_{0}^{\infty} f(x) d x\right) \prod_{p}\left(1-\frac{2}{p^{2}}+\frac{1}{p^{3}}\right)+O\left(y^{1 / 2+\epsilon}\right)
$$

(Compare the answer here to that in Question 7)
Solution 8. (i) We choose $\sigma=2$ and apply the Mellin inversion statement to get

$$
\sum_{n=1}^{\infty} \frac{\mu(n)^{2} \phi(n)}{n} f\left(\frac{n}{y}\right)=\frac{1}{2 \pi i} \sum_{n=1}^{\infty} \frac{\mu(n)^{2} \phi(n)}{n} \int_{2-i \infty}^{2+i \infty} F(s) \frac{y^{s}}{n^{s}} d s
$$

Since $\Re(s) \geq 2$ we have $\left|n^{-s}\right| \ll 1 / n^{2}$ and $|F(s)| \ll 1 /|s|^{2}$, so the above expression converges absolutely, and so we may swap the order of summation and integration. This gives

$$
\sum_{n=1}^{\infty} \frac{\mu(n)^{2} \phi(n)}{n} f\left(\frac{n}{y}\right)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} y^{s} F(s)\left(\sum_{n=1}^{\infty} \frac{\mu(n)^{2} \phi(n)}{n^{1+s}}\right) d s
$$

Recalling that $\sum_{n} \mu(n)^{2} \phi(n) / n^{1+s}=\zeta(s) Z(s)$ from the previous question gives the result.
(ii) As before, we move the line of integration to $\Re(s)=1 / 2+\epsilon$ using Cauchy's residue Theorem. The only pole is at $s=1$.

$$
\frac{1}{2 \pi i}\left(\int_{1 / 2+\epsilon+i T}^{1 / 2+\epsilon-i T}+\int_{1 / 2+\epsilon-i T}^{2-i T}+\int_{2-i T}^{2+i T}+\int_{2+i T}^{1 / 2+\epsilon+i T}\right) y^{s} F(s) \zeta(s) Z(s) d s=y Z(1) F(1) .
$$

On the second and fourth integrals $\zeta(s) \ll T, y^{s} \ll y^{2}, Z(s) \ll 1$ and $F(s) \ll 1 / T^{100}$ so the contribution is $O\left(x / T^{99}\right)$. On the first integral
$\left|y^{s}\right| \ll y^{1 / 2+\epsilon},|\zeta(s)| \ll|s|,|Z(s)| \ll 1$ and $|F(s)| \ll 1 /|s|^{100}$, so the contribution is $O\left(y^{1 / 2+\epsilon}\right)$. Thus, letting $T \rightarrow \infty$ we find

$$
\frac{1}{23 \pi i} \int_{2-i \infty}^{2+i \infty} y^{s} F(s) \zeta(s) Z(s) d s=y Z(1) F(1)+O\left(y^{1 / 2+\epsilon}\right)
$$

Question 9 (Bonus Question). Let $\sigma(n)=\sum_{d \mid n} d$ be the sum of divisors of n. Following the approach of Question 7 or Question 8, obtain an asymptotic formula for $\sum_{n<x} \mu(n)^{2} \sigma(n)$ or $\sum_{n} \mu(n)^{2} \sigma(n) f(n / y)$.

Solution 9. We just give the argument for $\sum_{n} \mu(n)^{2} \sigma(n) f(n / y)$; the argument for the other case is essentially the same.

Note that $\sigma(n) \leq n \tau(n)=n^{1+o(1)}$. Thus, using Mellin inversion and swapping the order of summation and integration as in the previous question, we have that

$$
\sum_{n=1}^{\infty} \mu(n)^{2} \sigma(n) f\left(\frac{n}{y}\right)=\frac{1}{2 \pi i} \int_{3-i \infty}^{3+i \infty} y^{s} F(s)\left(\sum_{n=1}^{\infty} \frac{\mu(n)^{2} \sigma(n)}{n^{s}}\right) d s
$$

We may swap the order of summation since $\left|\sigma(n) / n^{s}\right| \ll 1 / n^{3 / 2}$ when $\Re(s)=3$, so everything converges absolutely. We have that for $\Re(s)>2$

$$
\begin{gathered}
G(s)=\sum_{n=1}^{\infty} \frac{\mu(n)^{2} \sigma(n)}{n^{s}}=\prod_{p}\left(1+\frac{p+1}{p^{s}}\right) \\
\left(1+\frac{p+1}{p^{s}}\right)\left(1-\frac{1}{p^{s-1}}\right)=1-\frac{1}{p^{2 s-2}}+\frac{1}{p^{s}}-\frac{1}{p^{2 s-1}}
\end{gathered}
$$

so $G(s)=\zeta(s-1) Z(s)$ where

$$
Z(s)=\prod_{p}\left(1-\frac{1}{p^{2 s-2}}+\frac{1}{p^{s}}-\frac{1}{p^{2 s-1}}\right),
$$

and since $\left|1-p^{-2 s+2}+p^{-s}-p^{-2 s+1}\right| \leq 1+3 p^{-2 \sigma+2}$ for $\sigma=\Re(s)<2$, we have that

$$
|Z(s)| \ll \exp \left(\sum_{p} \log \left(1+3 p^{-2 \sigma+2}\right)\right) \ll \exp \left(\sum_{p} O\left(p^{-2 \sigma+2}\right)\right)
$$

so $Z(s)$ converges absolutely for $\Re(s)>3 / 2$. Thus we want to estimate

$$
\frac{1}{2 \pi i} \int_{3-i \infty}^{3+i \infty} y^{s} F(s) Z(s) \zeta(s-1) d s
$$

We move the line of integration to $\Re(s)=3 / 2+\epsilon$. The only pole of the integrand is from $\zeta(s-1)$ at $s=2$. by Cauchy's residue theorem
$\frac{1}{2 \pi i}\left(\int_{3 / 2+\epsilon+i T}^{3 / 2+\epsilon-i T}+\int_{3 / 2+\epsilon-i T}^{3-i T}+\int_{3-i T}^{3+i T}+\int_{3+i T}^{3 / 2+\epsilon+i T}\right) y^{s} F(s) \zeta(s-1) Z(s) d s=y^{2} Z(2) F(2)$.

On the second and fourth contours, $\left|y^{s}\right| \ll y^{3}$, $|\zeta(s-1)| \ll T,|Z(s)| \ll 1$ and $|F(s)| \ll T^{-100}$, so these contribute $O\left(y^{3} T^{-99}\right)$. On the first contour $\left|y^{s}\right| \ll y^{3 / 2},|\zeta(s-1)| \ll(1+|s|),|Z(s)| \ll 1$ and $|F(s)| \ll(1+|s|)^{-100}$, so this contributes $O\left(y^{3 / 2}\right)$. Letting $T \rightarrow \infty$ then gives

$$
\frac{1}{2 \pi i} \int_{3-i \infty}^{3+i \infty} y^{s} F(s) \zeta(s-1) Z(s) d s=y^{2} F(2) Z(2)+O\left(y^{3 / 2}\right)
$$

This gives the desired asymptotic formula.
Question 10 (Bonus Question). Let $\Psi(x, y)=\{n \leq x: p \mid n \Rightarrow p \leq y\}$ be the set of integers up to x which only involve prime factors of size at most y.
(i) Let $\alpha \in(0,1)$ be fixed. Show that as $x \rightarrow \infty$

$$
\sum_{x^{\alpha} \leq p \leq x} \frac{1}{p}=\log \frac{1}{\alpha}+o(1)
$$

(ii) Show that for $x^{1 / 2} \leq y \leq x$ we have

$$
\Psi(x, y)=\left(1-\log \left(\frac{\log x}{\log y}\right)+o(1)\right) x
$$

(iii) Show that for any $x \geq 1$ and $z \geq y>0$

$$
\Psi(x, y)=\Psi(x, z)-\sum_{p<y \leq z} \Psi\left(\frac{x}{p}, p\right)
$$

(iv) Deduce that for $x^{1 / 3} \leq y \leq x^{1 / 2}$

$$
\Psi(x, y)=\left(1-\log 2-\int_{2}^{\log x / \log y} \frac{1}{v}(1-\log (v-1)) d v+o(1)\right) x
$$

(v) Define a function $\rho:[0, \infty) \rightarrow \mathbb{R}$ by $\rho(u)=1$ if $u \leq 1$ and for $u>1$

$$
\rho(u)=1-\int_{1}^{u} \rho(t-1) \frac{d t}{t}
$$

Show that parts (ii) and (iv) imply that for $u \leq 3$

$$
\Psi\left(x, x^{1 / u}\right)=(\rho(u)+o(1)) x
$$

(vi) Show by induction that if

$$
\Psi\left(x, x^{1 / u}\right)=(\rho(u)+o(1)) x
$$

for $u \leq m$, then the same equation holds for $u \leq m+1$. Deduce that for any fixed $u>0$ we have

$$
\Psi\left(x, x^{1 / u}\right)=(\rho(u)+o(1)) x
$$

Solution 10. (i) This follows from partial summation and the prime number theorem. Actually it only requires Mertens' Theorem: we have $\sum_{p<x} 1 / p=$ $\log \log x-C+o(1)$, so $\sum_{x^{\alpha}<p<x} 1 / p=\log \log x-\log \log x^{\alpha}+o(1)=$ $\log 1 / \alpha+o(1)$.
(ii) A number has at most one prime factor bigger than $y>x^{1 / 2}$, so by inclusion-exclusion

$$
\begin{aligned}
\Psi(x, y) & =\#\{n \leq x\}-\sum_{y<p \leq x} \#\{n \leq x: p \mid n\}=x+O(1)-\sum_{y<p \leq x}\left(\frac{x}{p}+O(1)\right) \\
& =x\left(1+o(1)-\sum_{y<p \leq x} \frac{1}{p}\right)=x\left(1-\frac{\log x}{\log y}+o(1)\right) .
\end{aligned}
$$

(iii) Again this is inclusion-exclusion based on the largest prime factor $P^{+}(n)$ of n.
$\Psi(x, y)=\sum_{\substack{n \leq x \\ P^{+}(n) \leq y}} 1=\sum_{\substack{n \leq x \\ P^{+}(n) \leq z}} 1-\sum_{\substack{n \leq x \\ y<P^{+}(n) \leq z}} 1=\Psi(x, z)-\sum_{y<p \leq z} \#\left\{n \leq x: P^{+}(n)=p\right\}$.
But, since the last set contains elements which are a multiple of p, we see that $\left.\#\left\{n \leq x: P^{+}(n)=p\right\}=\#\left\{m \leq x / p: P^{(} m\right) \leq p\right\}=\Psi(x / p, p)$.
(iv) Let $z=x^{1 / 2}$, and apply the above identity. We have

$$
\Psi(x, y)=\Psi\left(x, x^{1 / 2}\right)-\sum_{y \leq p \leq x^{1 / 2}} \Psi\left(\frac{x}{p}, p\right) .
$$

We now see that since $y \geq x^{1 / 3}$ we have $p \geq(x / p)^{1 / 2}$ for all p in the above sum, so we may apply (ii). This gives

$$
\Psi(x, y)=(1-\log 2+o(1)) x-\sum_{y \leq p \leq x^{1 / 2}}\left(1-\log \left(\frac{\log x / p}{\log p}\right)+o(1)\right) \frac{x}{p}
$$

By partial summation

$$
\begin{aligned}
\sum_{y \leq p \leq x^{1 / 2}}\left(1-\log \left(\frac{\log x / p}{p}\right)\right) \frac{x}{p} & =x \int_{y}^{x^{1 / 2}} \frac{1}{t \log t}\left(1-\log \left(\frac{\log x / t}{\log t}\right)\right) d t+o(x) \\
& =x \int_{2}^{\log x / \log y} \frac{1}{v}(1-\log (v-1)) d v .
\end{aligned}
$$

(We made a change of variables $v=\log x / \log p$ in the last line). This gives the result.
(v) Since $\rho(1)=1$ for $u \leq 1$, the result is trivial for $u \leq 1$. We then see $\rho(u)=1-\int_{1}^{u} d t / t=1-\log u$ for $1 \leq u \leq 2$, so this agrees with (ii). Finally, for $2 \leq u \leq 3$ we see that
$\rho(u)=1-\int_{1}^{u} \frac{\rho(t-1)}{t} d t=\rho(2)-\int_{2}^{u} \frac{\rho(t-1) d t}{t}=\rho(2)-\int_{2}^{u}(1-\log (t-1)) \frac{d t}{t}$,
so this agrees with (iv).
(vi) Assume that for $u \leq m$ we have $\Psi\left(x, x^{1 / u}\right)=(\rho(u)+o(1)) x$. Then by (iii),

$$
\Psi\left(x, x^{1 /(u+1)}\right)=\Psi\left(x, x^{1 / u}\right)-\sum_{x^{1 /(u+1)} \leq p \leq x^{1 / u}} \Psi\left(\frac{x}{p}, p\right) .
$$

But if $p \geq x^{1 /(u+1)}$, we have $p^{u} \geq x / p$, so if $u \leq m$ we have

$$
\Psi(x / p, p)=\left(\rho\left(\frac{\log x / p}{\log p}+o(1)\right) \frac{x}{p} .\right.
$$

Thus

$$
\begin{aligned}
\Psi\left(x, x^{1 /(u+1)}\right) & =(\rho(u)+o(1)) x-\sum_{x^{1 /(u+1)} \leq p \leq x^{1 / u}}\left(\rho\left(\frac{\log x / p}{\log p}+o(1)\right) \frac{x}{p}\right. \\
& =x\left(\rho(u)+o(1)-\int_{x^{1 /(u+1)}}^{x^{1 / u}} \frac{1}{t \log t} \rho\left(\frac{\log x / t}{\log t}\right) d t\right) \\
& =x\left(\rho(u)+o(1)-\int_{u}^{u+1} \frac{1}{v} \rho(v-1) d v\right) .
\end{aligned}
$$

Here we substituted $v=\log x / \log t$ in the final line. But from the definition of ρ, for $u \geq 2$

$$
\rho(u+1)=1-\int_{1}^{u+1} \frac{\rho(t-1)}{t} d t=\rho(u)-\int_{u}^{u+1} \frac{\rho(v-1)}{v} d v,
$$

so the above expression is $x(\rho(u+1)+o(1))$, as required. Therefore we see that if the formula holds for $u \leq m$, it also holds for $u \leq m+1$.
james.maynard@maths.ox.ac.uk

