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CHAPTER 1

Asymptotic Estimates

We will repeatedly encounter interesting number-theoretic objects which are

complicated, such as the counting function of the primes. To understand these

complicated functions, we want to approximate them by much simpler functions,

such as a continuous function with no number-theoretic properties. To do this we

need to control the error in such approximations, and the following notation is very

useful to keep us focused on what is going on.

Definition (Big Oh notation). We write ‘O(h(x))’ to denote a function g(x)

which satisfies

|g(x)| ≤ C · h(x)

for some constant C > 0 and all x under consideration.

Since the function g and the constant C are unspecified, multiple uses of O(·)
can specify different functions. Moreover, this can lead to some initally confusing

issues when used with the = sign, since f(x) = O(h(x)) and g(x) = O(h(x))

does not imply that f(x) = g(x). Moreover, we will use O(h(x)) inside various

expressions, so given functions f, g, h, when we write ‘f(x) = g(x) + O(h(x)) for

x ∈ S’ we mean there exists a constant C > 0 (which depends only on f, g, h,S)

such that

|f(x)− g(x)| ≤ C · h(x)

for all x ∈ S. If the set S is clear from the context (as is normally the case), we

just write ‘f(x) = g(x) + O(h(x))’. We sometimes call g(x) the ‘main term’ and

h(x) the ‘error term’ in an approximation to f .

Example 1.1.

• x = O(x2) for x ≥ 1. (Since x ≤ x2 for x ≥ 1.)

• x2 = O(x) for 0 ≤ x ≤ 10. (Since x2 ≤ 10x for 0 ≤ x ≤ 10.)

• It is not the case that x2 = O(x) for x ≥ 1 (since as x→∞, x2/x→∞.)

• (x+ 1)2 = x2 +O(x) for x ≥ 1 (since |(x+ 1)2 − x2| ≤ 3x for x ≥ 1.)

• bxc = sup{n ∈ Z : n ≤ x} = x+O(1) for x ∈ R. (Since x− 1 ≤ bxc ≤ x,

so |bxc − x| ≤ 1.)
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2 1. ASYMPTOTIC ESTIMATES

•
√
x+ 1 =

√
x+ 1

2
√
x
− 1

4x3/2 +O
(

1
x5/2

)
for x ≥ 1. (Since for f(x) =

√
x,

f(x+1) = f(x)+f ′(x)+f ′′(x)+f ′′′(y) for some y ∈ [x, x+1] by Taylor’s

Theorem, and f ′′′(y) = 3/(8y5/2) ≤ 6/(8x5/2) for x ≥ 1.)

Lemma 1.2 (Properties of Big Oh notation).

(1) Non-negativity of error term:

If f(x) = O(g(x)) then g(x) ≥ 0.

(2) Transitivity:

If f(x) = O(g(x)) and g(x) = O(h(x)) then f(x) = O(h(x)).

(3) Additivity:

If f1(x) = g1(x) +O(h1(x)) and f2(x) = g2(x) +O(h2(x)) then

f1(x) + f2(x) = g1(x) + g2(x) +O(h1(x) + h2(x)).

Proof. These follow immediately from the definition. �

Definition (Further asymptotic notation).

• Little Oh notation:

Given h(x) > 0, when considering a limit x → a we write ‘o(h(x))’ to

denote a function g(x) which satisfies

lim
x→a

g(x)

h(x)
→ 0.

If we don’t explicitly mention the limit point a then it is assumed a =∞.

• Vinogradov notation:

We have the binary relation f(x)� g(x) if f(x) = O(g(x)).

• For two positive functions f, g, we write f(x) ∼ g(x) as x→ a if

lim
x→a

f(x)

g(x)
= 1.

If we just write f(x) ∼ g(x) then it is assumed a =∞.

• We write f(x) � g(x) for x ∈ S if f(x) = O(g(x)) for x ∈ S and

g(x) = O(f(x)) for x ∈ S.

Although the Vinogradov notation overlaps with Big Oh notation, the Big

Oh notation should be thought of as a placeholder for some unspecified function,

whereas the � is an inequality which can exploit the transitivity of O(·), so we

might write things like f(x)� g(x)� h(x).



CHAPTER 2

Partial Summation

Lemma 2.1 (Partial Summation). Let an ∈ C be a complex sequence, and

f : R→ R continuously differentiable on the interval [x, y]. Let

A(t) :=
∑
n≤t

an.

Then ∑
x<n≤y

anf(n) = A(y)f(y)−A(x)f(x)−
∫ y

x

A(t)f ′(t)dt.

Proof. We let n1 = bxc+ 1, n2 = byc so the sum is over n1 ≤ n ≤ n2. (Here

bzc is the largest integer less than or equal to z.) We note that an = A(n)−A(n−1).

Therefore, rearranging the sums, we see that∑
x<n≤y

anf(n) =
∑

n1≤n≤n2

f(n)
(
A(n)−A(n− 1)

)
=

∑
n1≤n≤n2

f(n)A(n)−
∑

n1−1≤n≤n2−1

f(n+ 1)A(n)

=
∑

n1≤n≤n2−1

A(n)
(
f(n)− f(n+ 1)

)
+A(n2)f(n2)−A(n1 − 1)f(n1).

Since f is differentiable,
∫ n+1

n
f ′(t)dt = f(n+ 1)− f(n). Therefore∑

n1≤n≤n2−1

A(n)
(
f(n)− f(n+ 1)

)
= −

∑
n1≤n≤n2−1

A(n)

∫ n+1

n

f ′(t)dt.

Since A(t) only changes at integers, A(t) = A(n) for t ∈ [n, n+ 1). Therefore∑
n1≤n≤n2−1

A(n)

∫ n+1

n

f ′(t)dt =
∑

n1≤n≤n2−1

∫ n+1

n

A(t)f ′(t)dt =

∫ n2

n1

A(t)f ′(t)dt.

This gives∑
x<n≤y

anf(n) = A(n2)f(n2)−A(n1 − 1)f(n1)−
∫ n2

n1

A(t)f ′(t)dt.

This is essentially the result; to finish off we just need to observe that

A(y)f(y)−
∫ y

n2

A(t)f ′(t) = A(n2)f(n2),

3



4 2. PARTIAL SUMMATION

and

−A(x)f(x)−
∫ n1

x

A(t)f ′(t)dt = −A(n1 − 1)f(n1)

since A(t) = A(n2) = A(y) for t ∈ [n2, y] and A(t) = A(x) = A(n1 − 1) for

t ∈ [x, n1). �

Corollary 2.2. Let an, f, A(t) be as in Lemma 2.1. If A(t)f(t)→ 0 as t→∞
then

∞∑
n=1

anf(n) = −
∫ ∞
1

A(t)f ′(t)dt

whenever both sides converge.

Proof. Apply Lemma 2.1 with x = 1− ε and y = 1/ε, and then let ε→ 0. �

Lemma 2.3. Let π(x) = #{p < x} be the prime counting function, and θ(x) =∑
p<x log p. Then we have

π(x) =
θ(x)

log x
+

∫ x

2

θ(t)dt

t(log t)2
.

In particular, if θ(x) = x+ o(x) then

π(x) =
x

log x
+ o
( x

log x

)
,

and if θ(x) = x+O(x1/2(log x)2) then

π(x) =

∫ x

2

dt

log t
+O(x1/2 log x).

Proof. Let an = log n if n is prime, and 0 otherwise. Let f(t) = 1/ log t.

Then by Lemma 2.1

π(y) =
∑
n<y

anf(n) =

∑
p<y log p

log y
+

∫ y

2

(∑
p<t

log p
) dt

t(log t)2
.

This gives the first statement. If θ(t) = t+ o(t) then this gives

π(y) =
y + o(y)

log y
+O

(∫ y

2

dt

(log t)2

)
=

y

log y
+ o
( y

log y

)
.

If θ(t) = t+O(t1/2(log t)2) then this gives

π(y) =
y +O(y1/2(log y)2)

log y
+

∫ y

2

dt

(log t)2
+O

(∫ y

2

dt

t1/2

)
=

y

log y
+

∫ y

2

dt

(log t)2
+O(y1/2 log y).

To finish we see that integration by parts gives∫ y

2

dt

log t
=

y

log y
− 2

log 2
+

∫ y

2

dt

(log t)2
. �



CHAPTER 3

Arithmetic Functions

Definition (Multiplicative functions). Let f : Z → C be a function on the

integers. We say that f is multiplicative if f(nm) = f(n)f(m) for any coprime

integers n, m. We say that f is completely multiplicative if f(nm) = f(n)f(m)

for all integers n, m.

Definition (Dirichlet convolution). Let f , g : Z → C. Then the Dirichlet

convolution f ? g is a function defined by

(f ? g)(n) =
∑
ab=n

f(a)g(b).

Lemma 3.1 (Basic properties of Dirichlet convolution). Let f, g, h : Z → C.

Then

(1) Dirichlet convolution is commutative; f ? g = g ? f .

(2) Dirichlet convolution is associative; (f ? g) ? h = f ? (g ? h).

(3) Dirichlet convolution preserves multiplicativity; If f and g are multiplica-

tive then f ? g is multiplicative.

Proof. These follow from the definitions:

(f ? g)(n) =
∑
n=ab

f(a)g(b) =
∑
n=ab

f(b)g(a) = (g ? f)(n),

((f ? g) ? h)(n) =
∑
n=ab

h(b)
∑
a=cd

f(c)g(d) =
∑
n=bcd

h(b)f(c)g(d) = (f ? (g ? h))(n),

If gcd(n1, n2) = 1 then, letting a1 = gcd(a, n1) and a2 = a/a1 (and similarly for b)

(f ? g)(n1n2) =
∑

ab=n1n2

f(a)g(b) =
∑

a1b1=n1
a2b2=n2

f(a1a2)g(b1b2)

=
∑

a1b1=n1
a2b2=n2

f(a1)g(b1)f(a2)g(b2)

= (f ? g)(n1) · (f ? g)(n2). �

Definition (Special arithmetic functions µ,Λ, τ). We have the following def-

initions:
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6 3. ARITHMETIC FUNCTIONS

• The Möbius function µ(n) is (−1)k if n is a product of k distinct primes,

and 0 if n has a repeated prime factor.

• The Von Mangoldt function Λ(n) is log p if n = pj for some prime p, and

0 if n has two or more distinct prime factors.

• The Divisor function τ(n) is the number of different ways of writing n =

ab for two positive integers a, b.

Lemma 3.2 (Mobius inversion). If f, g : Z → C then f = g ? 1 if and only if

g = f ? µ.

Proof. Let δ(n) = 1 if n = 1 and 0 otherwise. If n = pe11 . . . pekk > 1 then

(µ?1)(n) =
∑
d|n

µ(d) =
∑

d1,...dk
di|p

ei
i

µ(d1) . . . µ(dk) =
k∏
i=1

(
µ(1)+· · ·+µ(peii )

)
= (1−1)k = 0.

If n = 1 then (µ ? 1)(n) = 1. Thus µ ? 1 = δ. Now if g = f ? 1 then

g ? µ = (f ? 1) ? µ = f ? (µ ? 1) = f ? δ = f.

Conversely, if f = g ? µ then

f ? 1 = (g ? µ) ? 1 = g ? (µ ? 1) = g ? δ = g. �

Lemma 3.3.

Λ(n) = (µ ? log)(n).

Proof. Let n have prime factorization n = pe11 . . . pekk for distinct primes

p1, . . . , pk. Then

log n =

k∑
i=1

ei log pi =

k∑
i=1

∑
d=pji>1
d|n

log pi =
∑
d|n

Λ(d) = (Λ ? 1)(n).

Now the result follows by Möbius inversion (Lemma 3.2). �

Lemma 3.4. Let ψ(x) =
∑
n<x Λ(n). Then we have for x ≥ 2

|ψ(x)− θ(x)| � x1/2 log x.

Proof. Recall than Λ is non-zero only on prime powers. We split the contri-

butions to ψ according to the exponent:

ψ(n) =
∑

1≤j≤log x/ log 2

∑
n≤x
n=pj

log p =
∑
p<x

log p+
∑

p<x1/2

log p+
∑

3≤j≤2 log x

∑
p≤x1/j

log p.

The first term is exactly θ(x). The other terms are bounded by∑
n<x1/2

log x+
∑

3≤j≤2 log x

∑
n<x1/3

log x� x1/2 log x+ x1/3(log x)2 � x1/2 log x. �



CHAPTER 4

Dirichlet Series

Lemma 4.1 (Region of absolute convergence). Let δ > 0 and f : Z→ C satisfy

|f(n)| ≤ no(1). Then the series
∞∑
n=1

f(n)

ns

converges absolutely to an analytic function for <(s) > 1, and uniformly absolutely

on <(s) ≥ 1 + δ.

Proof. Since f(n) = no(1), there is an N0(δ) such that |f(n)| ≤ nδ/2 for

n ≥ N0. If <(s) ≥ 1 + δ then for N2 ≥ N1 ≥ N0(δ) we have

N2∑
n=N1

|f(n)|
|ns|

≤
N2∑

n=N1

nδ/2

n<(s)
≤
∫ N2

N1−1

ds

t1+δ/2
≤ 2

δ(N1 − 1)δ/2
.

For fixed δ > 0, this tends to 0 as N1 → ∞. Thus the series converges uniformly

absolutely in the region <(s) ≥ 1 + δ. Since δ > 0 was arbitrary, and the partial

sums are clearly analytic, this gives the result. �

Definition (The Riemann Zeta function). ζ(s) is defined for <(s) > 1 by

ζ(s) =

∞∑
n=1

1

ns
.

Although the series
∑∞
n=1 n

−s no longer converges absolutely when <(s) ≤ 1,

we find that we can extend the definition of ζ(s) to a larger region.

Lemma 4.2 (Analytic Continuation of ζ(s)). The function ζ(s) has a mero-

morphic continuation to the region <(s) > −2. In this region we have that

ζ(s) =
1

s− 1
+

1

2
+

s

12
− s(s+ 1)(s+ 2)

∫ ∞
1

({t} − 3{t}2 + 2{t}3)dt

12ts+3

Here {t} = t− btc is the fractional part of t.

7



8 4. DIRICHLET SERIES

Proof. We apply Lemma 2.2 with an = 1, f(n) = n−s, x = 1− ε and y =∞.

With this choice A(t) = btc = t− {t}. This gives

ζ(s) =

∞∑
n=1

anf(n) = s

∫ ∞
1

(t− {t})dt
ts+1

= s

∫ ∞
1

1

ts
− s

∫ ∞
1

{t}dt
ts+1

=
s

s− 1
− s

∫ ∞
1

{t}dt
ts+1

.

The function s/(s − 1) is meromorphic in the entire complex plane, with a simple

pole at s = 1. For <(s) > 0 the integral on the right hand side converges absolutely.

Thus the right hand side defines a function on <(s) > 0 with a simple pole at s = 1

and analytic elsewhere, which coincides with
∑∞
n=1 n

−s for <(s) ≥ 1. We can

extend this further by integration by parts. For <(s) > −1 we have

s

s− 1
− s

∫ ∞
1

{t}dt
ts+1

=
1

s− 1
+

1

2
− s

∫ ∞
1

({t} − 1/2)dt

ts+1

=
1

s− 1
+

1

2
− s(s+ 1)

∫ ∞
1

g(t)dt

ts+2

where g(t) =
∫ t
0
({u} − 1/2)du = ({t}2 − {t})/2 (note that |g(t)| ≤ 1/8 for all t).

Continuing once more gives

1

s− 1
+

1

2
+

s

12
− s(s+ 1)(s+ 2)

∫ ∞
1

({t} − 3{t}2 + 2{t}3)dt

12ts+3
. �

Corollary 4.3. If 0 < x < 1 then ζ(x) < 0. If x > 1 then ζ(x) > 1.

Proof. Recall that ζ(s) = s/(s−1)−s
∫∞
1
{t}dt/ts+1 from the proof of Lemma

4.2. If 0 < x < 1 then all these terms are negative. If x > 1 then all terms in the

Dirichlet series are positive, and the first term is 1. �

Corollary 4.4 (Ramanujan’s divergent series estimate).

ζ(−1) =
−1

12
.

Proof. Immediate from Lemma 4.2 by substituting s = −1. �

Lemma 4.5 (Growth of ζ(s)). For <(s) ≥ −19/10 and |s− 1| ≥ 1 we have

|ζ(s)| = O(1 + |s|3).

Proof. From Lemma 4.2, for <(s) ≥ −19/10 and |s− 1| ≥ 1 we have

|ζ(s)| = O(1) +O(|s|) +

∫ ∞
1

O(|s|3)

t<(s)+3
dt = O(1 + |s|3). �

Example 4.6 (Dirichlet Series for ζ ′(s)). For <(s) > 1 we have

∞∑
n=1

log n

ns
= −ζ ′(s).
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Proof. Let <(s) = 1 + δ. By the maximum modulus principle

sup
|z|≤δ/2

∣∣∣1
z

( 1

ns+z
− 1

ns

)∣∣∣ = sup
|z|=δ/2

∣∣∣1
z

( 1

ns+z
− 1

ns

)∣∣∣ ≤ 4

δn1+δ/2
.

This converges when summed over n, so by the dominated convergence theorem

ζ ′(s) = lim
z→0

(ζ(s+ z)− ζ(s)

z

)
= lim
z→0

lim
N→∞

N∑
n=1

( 1

zns+z
− 1

zns

)

= lim
N→∞

lim
z→0

N∑
n=1

( 1

zns+z
− 1

zns

)
= −

∞∑
n=1

log n

ns
. �





CHAPTER 5

Euler Products

In this section we make use of the key observation of Euler; that a Dirichlet

series
∑
n f(n)n−s has a product representation if f has the special property of

being multiplicative.

Lemma 5.1. Let f be a multiplicative function with |f(n)| ≤ no(1). Then for

<(s) > 1 we have
∞∑
n=1

f(n)

ns
=
∏
p

(
1 +

∞∑
j=1

f(pj)

pjs

)
.

In particular, if f is completely multiplicative then

∞∑
n=1

f(n)

ns
=
∏
p

(
1− f(p)

ps

)−1
.

Proof. We first want to show that the finite expressions

SM1,M2
(s) =

∏
p<M1

(
1 +

M2∑
j=1

f(pj)

pjs

)
converge to the Dirichlet series

∑∞
n=1 f(n)n−s as M2 →∞ and then M1 →∞.

If an integer n has a prime factorization n = pe11 . . . p
ej
j , then, since f is multi-

plicative, we see that

f(n)

ns
=
f(pe11 )

pe1s1

· f(pe22 )

pe2s2

· · ·
f(p

ej
j )

p
ejs
j

.

Therefore, if we expand the product SM1,M2
(s), we find that

SM1,M2(s) =
∑
n∈N

f(n)

ns

where N is the (finite) set of all integers n whose prime factorization only involves

primes p < M1, and each such prime occurs at most M2 times in the prime factoriza-

tion. Note that here we have made crucial use of the unique factorization of integers.

We see that N certainly contains all integers of size at most M = min(M1,M2).

Therefore we see that for M1 ≤M2∣∣∣SM1,M2
(s)−

∞∑
n=1

f(n)

ns

∣∣∣ ≤ ∑
n/∈N

|f(n)|
|ns|

≤
∑
n>M1

|f(n)|
|ns|

11



12 5. EULER PRODUCTS

Letting M2 →∞, this gives∣∣∣ ∏
p<M1

(
1 +

∞∑
j=1

f(pj)

pjs

)
−
∞∑
n=1

f(n)

ns

∣∣∣ ≤ ∑
n>M1

|f(n)|
|ns|

But since the series
∑∞
n=1 f(n)n−s converges absolutely, the right hand side tends

to 0 as M1 tends to infinity, which then gives the first result.

If f is completely multiplicative then f(pj) = f(p)j so the sum is a geometric

series, which simplifies to the expression given. �

Corollary 5.2 (Euler product for ζ(s)).

ζ(s) =
∏
p

(
1− 1

ps

)−1

Proof. This is just Lemma 5.1 applied to f(n) = 1, a completely multiplica-

tive function. �

Lemma 5.3 (Dirichlet series of convolution is product of Dirichlet series). Let

f and g be two multiplicative functions. Then

∞∑
n=1

(f ? g)(n)

ns
=
( ∞∑
a=1

f(a)

as

)( ∞∑
b=1

g(b)

bs

)
whenever s is such that

∑∞
a=1 f(a)a−s and

∑∞
b=1 g(b)b−s converge absolutely.

Proof. We have

N∑
n=1

(f ? g)(n)

ns
=

N∑
n=1

∑
ab=n f(a)g(b)

ns
=
∑
a,b

ab≤N

f(a)g(b)

asbs
.

If ab ≤ N then either a > N1/2 or b > N1/2 or both are at most N1/2. Thus∣∣∣ N∑
n=1

(f ? g)(n)

ns
−
(N1/2∑
a=1

f(a)

as

)(N1/2∑
b=1

g(b)

bs

)∣∣∣
≤

∑
N1/2<a≤N

∣∣∣f(a)

as

∣∣∣ ∑
b<N

∣∣∣g(b)

bs

∣∣∣+
∑
a≤N

∣∣∣f(a)

as

∣∣∣ ∑
N1/2<b≤N

∣∣∣g(b)

bs

∣∣∣
Since, by assumption, the series

∑
a f(a)a−s and

∑
b g(b)b−s converge absolutely,

the right hand side tends to zero as N →∞, and the Dirichlet series of the convo-

lution converges to the product of the Dirichlet series. �
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Lemma 5.4 (Dirichlet Series for ζ2, 1/ζ and ζ ′/ζ). For <(s) > 1 we have

∞∑
n=1

τ(n)

ns
= ζ(s)2,

∞∑
n=1

µ(n)

ns
=

1

ζ(s)
,

∞∑
n=1

Λ(n)

ns
= −ζ

′(s)

ζ(s)
.

Proof. We observe that τ = 1 ? 1, and so the first result follows from Lemma

5.3.

Since |µ(n)| ≤ 1 and µ is multiplicative, we have that for <(s) > 1

∞∑
n=1

µ(n)

ns
=
∏
p

(
1 +

∞∑
j=1

µ(pj)

pjs

)
=
∏
p

(
1− 1

ps

)
,

and that both sides converge absolutely. But clearly the right hand side is the Euler

product for 1/ζ(s).

Since Λ = µ ? log, we see that the second part follows from Lemma 5.3 and

Lemma 4.6. �

Corollary 5.5 (Non-vanishing of ζ(s) in <(s) > 1). If <(s) > 1 then

ζ(s) 6= 0.

Proof. By Lemma 5.4, for <(s) > 1 we have

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
,

which converges absolutely. Thus we cannot have ζ(s) = 0 in this region. �





CHAPTER 6

Poisson Summation

Definition (Schwarz spaces). Let S(R/Z) be the space of all infinitely differ-

entiable functions f : R/Z→ C.

Let S(Z) be the space of all functions f : Z → C such that for every k ∈ Z>0

we have f(x) = Ok(|x|−k).

Let S(R) be the space of all infinitely differentiable functions f : R → C such

that for every k, j ∈ Z>0 we have f (j)(x) = Ok,j(|x|−k).

Lemma 6.1 (Fourier transform for S(R)). Let f ∈ S(R). Then the Fourier

transform

f̂(ξ) :=

∫ ∞
−∞

f(x)e−2πixξdx

is a function in S(R).

Proof. First note that since f ∈ S(R), we have that f(x) = O(|x|−k) for

|x| ≥ 1. Thus f̂(ξ) is given by an absolutely convergent integral, and

f̂(ξ + ε)− f̂(ξ)

ε
=

∫
|x|<ε−1/2

f(x)e−2πixξ
(e−2πixε − 1

ε

)
dx+

∫
|x|≥ε−1/2

O
( |f(x)|

ε

)
dx.

In the first integral we use the Taylor expansion e−2πixε = 1 − 2πixε + O(x2ε2).

Thus, taking out a term −2πixf(x)e−2πixξ from both integrals, we find

f̂(ξ + ε)− f̂(ξ)

ε
=

∫ ∞
−∞
−2πixf(x)e−2πixξ +O

(∫
|x|<ε−1/2

εx2|f(x)|dx
)

+O
(∫
|x|≥ε−1/2

|f(x)|(1

ε
+ x)dx

)
=

∫ ∞
−∞
−2πixf(x)e−2πixξ +O

(∫
|x|<ε−1/2

εdx
)

+O
(∫
|x|≥ε−1/2

1

x4ε
+

1

x3

)
dx
)

=

∫ ∞
−∞
−2πixf(x)e−2πixξ +O(ε1/2).

This converges as ε → 0, showing f̂ ′(ξ) is the Fourier transform of −2πixf(x).

Since −2πixf(x) ∈ S(R) whenever f ∈ S(R), we can repeat the above argument

and find that f̂ (j) is the Fourier transform of (−2πix)jf(x) for all j ∈ Z>0.

15



16 6. POISSON SUMMATION

By differentiating by parts k times, we see that

f̂ (j)(ξ) =

∫ ∞
−∞

e−2πixξ

(2πiξ)k
∂k

∂xk

(
(−2πix)jf(x)

)
dx�j,k

1

|ξ|k
.

Thus f̂ ∈ S(R). �

Lemma 6.2 (Fourier inversion for S(R/Z)). Let g ∈ S(R/Z). Then the Fourier

transform

ĝ(n) =

∫ 1

0

g(θ)e−2πinθdθ

is a function in S(Z) such that

g(θ) =
∑
n∈Z

ĝ(n)e2πinθ.

Proof. Since g is infinitely differentiable, by integration by parts we see that

ĝ(n) =

∫ 1

0

g(j)(θ)
e2πinθ

(−2πin)j
dθ �j

1

|n|j
.

Thus ĝ ∈ S(Z). Let h ∈ S(R/Z) be given by

h(θ) = g(θ)−
∑
n∈Z

ĝ(n)e2πinθ.

We want to show that h(θ) = 0. Assume for a contradiction that h(θ1) 6= 0 for

some θ1. We first see that

ĥ(m) =

∫ 1

0

g(θ)e−2πimθdθ −
∑
n∈Z

ĝ(n)

∫ 1

0

e2πi(n−m)θdθ = ĝ(m)− ĝ(m) = 0.

Similarly we see that all the Fourier coefficients of h vanish. Thus if h 6= 0, by

considering f = ±(h + h) or f = ±(h − h)/i, we see there exists a real function

f ∈ S(R/Z) with f(θ1) > 0 but f̂(n) = 0 for all n ∈ Z.

Since f(θ1) > 0, there is an ε > 0 such that f(θ) > f(θ1)/2 for θ ∈ [θ1−ε, θ1+ε].

Then there is a δ > 0 such that | cos(2π(θ−θ1))+δ| < 1−δ/2 for all θ /∈ [θ1−ε, θ1+ε],

and there is an η > 0 such that η < ε and cos(2πi(θ − θ1)) + δ > 1 + δ/2 for all

θ ∈ [θ1 − η, θ1 + η].

Consider the function (δ+ cos(2π(θ− θ1)))k for some large integer k. This can

be expanded as trigonometric polynomial
∑
−k≤j≤k cje

2πijθ for some coefficients

cj . Since all Fourier coefficients of f vanish, we see that∫ 1

0

(
δ + cos(2π(θ − θ1))

)k
f(θ)dθ =

∑
−k≤j≤k

cj

∫ 1

0

f(θ)e2πijθdθ = 0.



6. POISSON SUMMATION 17

On the other hand, this integral is given by∫
|θ−θ1|≤ε

f(θ)(δ + cos(2π(θ − θ1)))k +

∫
|θ−θ1|≥ε

O(1− δ/2)kdθ

≥
∫
|θ−θ1|≤η

f(θ)(δ + cos(2π(θ − θ1)))k +O(1− δ/2)k

≥ 2η
f(θ1)

2
(1 + δ/2)k +O(1− δ/2)k.

Thus for k large enough the integral is non-zero, giving a contradiction. �

Theorem 6.3 (Poisson summation formula). Let f ∈ S(R) with Fourier trans-

form f̂ . Then ∑
n∈Z

f(n) =
∑
m∈Z

f̂(m).

Proof. Define two functions F,G : R/Z→ C by

F (θ) =
∑
n∈Z

f̂(n)e2πinθ,

G(θ) =
∑
m∈Z

f(θ +m).

Since f ∈ S(R) and f̂ ∈ S(R) by Lemma 6.1, it is easy to verify that F,G ∈ S(R/Z).

We want to show that F = G. We do this by computing Fourier coefficients. For

m ∈ Z, we find

F̂ (m) =

∫ 1

0

(∑
n∈Z

f̂(n)e2πinθ
)
e−2πimθdθ

=
∑
n∈Z

f̂(n)

∫ 1

0

e2πi(n−m)θdθ = f̂(m).

Similarly

Ĝ(m) =

∫ 1

0

(∑
n∈Z

f(θ + n)
)
e−2πimθdθ

=
∑
n∈Z

∫ n+1

n

f(θ)e−2πim(θ−n)dθ

=
∑
n∈Z

∫ n+1

n

f(θ)e−2πimθdθ = f̂(m).

(We may exchange the orders of summation and integration above since f, f̂ ∈ S(R)

so everything converges absolutely.)

By Lemma 6.2, F and G are uniquely determined by their Fourier coefficients,

and so are equal. �
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Lemma 6.4 (Meromorphic continuation of modified ζ(s)). Let f ∈ S(R) satisfy

f(x) = f(−x). Define the Mellin transform

F (s) =

∫ ∞
0

f(x)xs−1dx.

Then we have

ζ(s)F (s) =
f̂(0)

2s− 2
− f(0)

2s
+

∫ ∞
1

( ∞∑
n=1

f(nx)
)
xs−1dx+

∫ ∞
1

( ∞∑
n=1

f̂(nu)
)
u−sdu,

and the right hand side converges to a meromorphic function for all s ∈ C with

poles at s = 0 and s = 1.

Proof. For <(s) > 1 we have

ζ(s)F (s) =

∞∑
n=1

1

ns

∫ ∞
0

f(x)xs−1dx =

∞∑
n=1

∫ ∞
0

f(nt)ts−1dt =

∫ ∞
0

( ∞∑
n=1

f(nt)
)
ts−1dt.

(We may exchange the order of summation and integration using Fubini’s Theorem

since f ∈ S(R) and so everything coverges absolutely.) Let h(x) = f(xt). Then

ĥ(ξ) =

∫ ∞
−∞

f(xt)e−2πixξdx =
1

t

∫ ∞
−∞

f(u)e−2πiuξ/tdu =
f̂(ξ/t)

t
.

Thus, by Poisson summation (Theorem 6.3) we have∑
n∈Z

f(nt) =
∑
n∈Z

h(n) =
∑
m∈Z

ĥ(m) =
1

t

∑
m∈Z

f̂
(m
t

)
.

If f is even, then f̂ is also even, so we find

∞∑
n=1

f(nt) =
1

2

∑
n∈Z

f(nt)− f(0)

2
=
f̂(0)

2t
− f(0)

2
+

1

t

∞∑
m=1

f̂
(m
t

)
.

We separate the integral expression for ζ(s)F (s) into 0 ≤ x ≤ 1 and 1 ≤ x ≤ ∞,

and substitute the above expression into the integral over 0 ≤ x ≤ 1. This gives for

<(s) > 1

ζ(s)F (s) =

∫ ∞
1

( ∞∑
n=1

f(nt)
)
ts−1dt+

∫ 1

0

( ∞∑
n=1

f(nt)
)
ts−1dt

=

∫ ∞
1

( ∞∑
n=1

f(nt)
)
ts−1dt+

f̂(0)

2s− 2
− f(0)

2s
+

∫ 1

0

( ∞∑
m=1

f̂
(m
t

))
ts−2dt

=

∫ ∞
1

( ∞∑
n=1

f(nt)
)
ts−1dt+

f̂(0)

2s− 2
− f(0)

2s
+

∫ ∞
1

( ∞∑
m=1

f̂(mu)
)
u−sdu,

where in the final integral on the final line we substituted u = 1/t. �



CHAPTER 7

The Functional Equation

Lemma 7.1 (Gaussian is eigenfunction of Fourier operator). Let f(x) = e−πx
2 ∈

S(R). Then

f̂(ξ) = e−πξ
2

.

Proof. By completing the square, we have

f̂(ξ) =

∫ ∞
−∞

e−πx
2−2πixξdx = e−πξ

2

∫ ∞
−∞

e−π(x+iξ)
2

dx.

By Cauchy’s residue theorem∫ R+iξ

−R+iξ

f(z)dz +

∫ R

R+iξ

f(z)dz +

∫ −R
R

f(z)dz +

∫ −R+iξ

−R
f(z)dz = 0,

where the integrals are straight line contours. Since |f(z)| ≤ e−π(<(z)
2−=(z)2), we

see that the second and fourth terms both tend to 0 as R→∞. Thus we find that∫ ∞
−∞

e−π(x+iξ/2π)
2

dx = lim
R→∞

∫ R+iξ

−R+iξ

f(z)dz = −
∫ −∞
∞

f(z)dz =

∫ ∞
−∞

e−πx
2

dx.

The result follows on recalling the identity
∫∞
−∞ e−πu

2

du = 1. �

Definition (The Gamma function). For <(s) > 0, let Γ(s) be defined by

Γ(s) =

∫ ∞
0

xs−1e−xdx.

Theorem 7.2 (The functional equation). Define the function

ξ(s) = π−s/2Γ
(s

2

)
ζ(s).

Then ξ(s) has a meromorphic continuation to the entire complex plane, and satisfies

the functional equation

ξ(s) = ξ(1− s).

Proof. We apply Lemma 6.4 with f(x) = e−πx
2

. We see that substituting

y = πx2 gives

F (s) =

∫ ∞
0

e−πx
2

xs−1dx =
1

2πs/2

∫ ∞
0

e−yys/2−1dy =
Γ(s/2)

2πs/2
.

19



20 7. THE FUNCTIONAL EQUATION

Thus Lemma 6.4 gives

Γ(s/2)ζ(s)

2πs/2
=

1

2s− 2
− 1

2s
+

∫ ∞
1

( ∞∑
n=1

e−πn
2x2
)
xs−1dx+

∫ ∞
1

( ∞∑
n=1

e−πn
2x2
)
x−sdx,

and we see that the right hand side is unchanged if we replace s with 1− s. �

Lemma 7.3 (Functional equation for Γ(s)). For <(s) > 0, we have

Γ(s) =
Γ(s+ 1)

s

Proof. This is integration by parts:

Γ(s) =

∫ ∞
0

xs−1e−xdx =
[xs
s
· −e−x

]∞
0
−
∫ ∞
0

xs

s

(
−e−x

)
dx

=
Γ(s+ 1)

s
. �

Corollary 7.4. Γ(s) has a meromorphic continuation to the entire complex

plane, with poles only at the non-positive integers.

Proof. From Lemma 7.3 see that Γ(s+1)/s is a meromorphic continuation of

Γ(s) to the region <(s) > −1 with a simple pole at s = 0. By repeatedly applying

Lemma 7.3, we see that for any n ∈ Z>0 we have

Γ(s) =
Γ(s+ n)

s(s+ 1) · · · (s+ n− 1)
,

and this defines an analytic continuation of Γ(s) to <(s) > −n, with possible poles

only at s = 0,−1,−2, . . . ,−(n− 1). This gives the result. �

Corollary 7.5. ζ(s) has a meromorphic continuation to the entire complex

plane.

Proof. ζ(s) = ξ(s)πs/2/Γ(s/2), and the right hand side has a suitable contin-

uation. �

Lemma 7.6 (Euler reflection fomula). For all s ∈ C we have

Γ(s)Γ(1− s) =
π

sin(πs)
.

Proof. We see that Γ(s)Γ(1−s) is a meromorphic function which has at most

a simple pole at s ∈ Z and no other poles. Since sin(πs) = (eiπs − e−iπs)/2 has

zeros at n ∈ Z and has no poles, we see G(s) = Γ(s)Γ(1 − s) sin(πs) is an entire

function. Moreover, G(s) = G(s + 1), so we can define an analytic function F (s)

on C\{0} by F (Reiθ) := G((θ − i logR)/2π). By Lemma 7.3 we have

|G(σ + it)| =
∣∣∣Γ(1 + σ + it)Γ(2− σ + it)

(σ + it)(1− σ + it)

∣∣∣ · ∣∣∣e−πt+iπσ + eπt−iπσ

2

∣∣∣.
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For 0 < σ, the integral equation shows that |Γ(σ + it)| ≤ |Γ(σ)|. Therefore for

|t| > 1 and 0 ≤ σ ≤ 1 we have

|G(σ + it)| ≤ Γ(1 + σ)

|σ + it|
Γ(2− σ)

|1− σ + it|
eπ|t| � eπ|t|.

Thus for R < e−2π or R > e2π we have

|F (Reiθ)| = |G((θ − i logR)/2π)| � R1/2 +R−1/2.

In particular, since sF (s)→ 0 as s→ 0, we can extend F (s) to an entire function

on all of C. But then for large R

F (s)− F (0) =

∫
|z|=R

(F (z)

z − s
− F (z)

z

)
dz

= s

∫
|z|=R

F (z)

z(z − s)
dz

� |s|
∫
|z|=R

O(R−3/2)|dz| � |s|
R1/2

.

Since this is true for all large R, letting R→∞ shows that F is constant. Thus G

is a constant. To find the value of the constant, we see that as s→ 0 we have

G(s) = Γ(1 + s)Γ(1− s) sin(πs)

s
→ Γ(1)2π = π. �

Corollary 7.7 (Non-vanishing of Γ(s)). Γ(s) has no zeros.

Proof. sin(πs) has no poles, so this follows immediately from Lemma 7.6. �

Lemma 7.8 (Zeros and poles of ζ(s)). ζ(s) is a meromorphic function with

• A simple pole at s = 1, and no other poles.

• ‘Trivial zeros’ at s = −2,−4, . . . , and no other zeros in <(s) < 0.

• ‘Non-trivial’ zeros ρ with <(ρ) ∈ [0, 1].

• No zeros in <(s) > 1.

Proof. The functional equation (Theorem 7.2) gives

ζ(s) =
πs/2Γ

(
1−s
2

)
π(1−s)/2Γ(s/2)

ζ(1− s).

ζ(1 − s) has no zeros in <(s) < 0 by Corollary 5.5, and in <(s) ≤ 1 it has only a

simple pole at s = 0 by Lemma 4.2. πs/2 and π(1−s)/2 have no zeros or poles in

the complex plane. Γ((1 − s)/2) has no zeros by Corollary 7.7 and has a unique

simple poles at s = 1 in <(s) ≤ 1. Γ(s/2) has simple poles at s = 0,−2,−4, . . .

and no zeros. Putting these statements together, we see that the right hand side

has a removable singularity at s = 0, a simple pole at s = 1 and no other poles in

<(s) ≤ 1. Moreover, it has zeros at s = −2,−4, . . . but no other zeros in <(s) < 0.

Recalling ζ(s) has no zeros in <(s) > 1 by Corollary 5.5 gives the result. �





CHAPTER 8

Perron’s Formula

Lemma 8.1. Let y > 0 and y 6= 1. Then for any c > 0 and T ≥ 2 we have

1

2πi

∫ c+iT

c−iT

ysds

s
= H(y) +O

( yc

T | log y|

)
,

where

H(y) =

1, if y > 1,

0, if y < 1.

Proof. This is an exercise in Cauchy’s residue theorem. The integrand ys/s

is meromorphic in the whole complex plane with a simple zero at s = 0 with residue

1. If y > 1 then the residue theorem implies that for any r > 1∫ c+iT

c−iT

ysds

s
+

∫ −r+iT
c+iT

ysds

s
+

∫ −r−iT
−r+iT

ysds

s
+

∫ c−iT

−r−iT

ysds

s
= 2πiRes

s=1

ys

s
= 2πi.

The first term on the left hand side is the thing we want to estimate. In the second

and fourth integrals we have |s| ≥ T and |ys| ≤ y<(s), so they are each bounded in

size by ∫ c

−r

yσdσ

T
≤ 1

T

∫ c

−∞
yσdσ =

yc

T | log y|
.

In the third integral we have |ys| ≤ yc and |s| ≥ r, so this is bounded by∫ T

−T

ycdt

r
≤ 2ycT

r
.

Putting this together, we see that∫ c+iT

c−iT

ysds

s
= 2πi+O

( yc

T log y

)
+O

(ycT
r

)
.

Letting r → ∞ then gives the result in this case. If instead y < 1, then we apply

the same argument but with r < 0. In this case the closed contour avoids the pole

at s = 0, and so we find the the same argument gives∫ c+iT

c−iT

ysds

s
= O

( yc

T | log y|

)
+O

(ycT
|r|

)
.

Letting r → −∞ gives the result. �
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24 8. PERRON’S FORMULA

Lemma 8.2 (Perron’s formula). Let 2 ≤ T ≤ 2x and c = 1 + 1/ log x. Let

an ∈ C be a complex sequence with |an| ≤ (log n)2. Then

A(x) =
∑
n<x

an =
1

2πi

∫ c+iT

c−iT
xs
( ∞∑
n=1

an
ns

)ds
s

+O
(x(log x)3

T

)
.

Proof. We note that if |n− x| ≤ 3 and n ≥ 1 then (x/n)c = O(1), so

1

2πi

∫ c+iT

c−iT

(x
n

)s ds
s
� log T ≤ log x.

Using this if |n−x| ≤ 3 and using Lemma 8.1 if |n−x| > 3, we have for any N > x∑
n<x

an =
∑
n<N
|n−x|>3

an

( 1

2πi

∫ c+iT

c−iT

xsds

nss
+O

( (x/n)c

T | log (x/n)|

))

+
∑

|n−x|≤3

an

( 1

2πi

∫ c+iT

c−iT

xsds

nss
+O(log T )

)

=
1

2πi

∫ c+iT

c−iT
xs
( N∑
n=1

an
ns

)ds
s

+O
(xc
T

∑
n<N
|n−x|≥3

(log n)2

nc| log (x/n)|

)
+O(log x)3.

We first concentrate on the error term. We note that xc � x. If n < 3x/4 then

| log(x/n)| � log(4/3) > 0. Thus these terms contribute

� x

T

∑
n<3x/4

(log n)2

nc
� x

T

∑
n<3x/4

(log n)2

n
� x(log x)3

T
.

Similarly, if n > 5x/4 then | log(x/n)| ≥ log(5/4) > 0, and so these terms contribute

� x

T

∑
n>5x/4

(log n)2

nc
� x

T

∫ ∞
5x/4−1

(log t)2dt

t1+1/ log x
� x(log x)3

T
.

For the terms 3x/4 ≤ n ≤ 5x/4 we put n = bxc + h and note that | log(n/x)| =

| log(1 + (n− x)/x)| ≥ |h|/2x for 3 ≤ |h| ≤ x/4. Thus these terms contribute

� x

T

∑
3≤|h|≤x/4

(log x)2x

|h|(bxc+ h)c
� x(log x)2

T

∑
1≤h≤x/4

1

h
� x(log x)3

T
.

Putting this together, we find that for any N > x we have∑
n<x

an =
1

2πi

∫ c+iT

c−iT
xs
( N∑
n=1

an
ns

)ds
s

+O
(x(log x)3

T

)
.

Since the Dirichlet series converges uniformly absolutely on <(s) ≥ 1+δ by Lemma

4.1, letting N →∞ gives the result. �
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Lemma 8.3 (Counting primes). Let c = 1 + 1/ log x and 2 ≤ T ≤ 2x. Then we

have

ψ(x) =
∑
n<x

Λ(n) =
−1

2πi

∫ c+iT

c−iT
xs
ζ ′

ζ
(s)

ds

s
+O

(x(log x)3

T

)
.

Proof. This follows immediately from Lemma 5.4 and Lemma 8.2, noting

that Λ(n) ≤ log n. �





CHAPTER 9

ζ(s) as a Taylor Series

Lemma 9.1 (Taylor coefficients are controlled by size of function). Let f(z) be

an analytic function on the disk |z| ≤ R, with Taylor series f(z) =
∑∞
n=0 cnz

n.

Then for n ≥ 1 the coefficients cn satisfy

|cn| ≤
8 max|z|=R <(f(z)− f(0))

Rn
.

Proof. Let cn = an + ibn for real an, bn, and let g(z) = f(z)− f(0). We have

<(g(Reiθ)) = <
( ∞∑
n=1

cnR
neinθ

)
=

∞∑
n=1

Rnan cos(nθ)−
∞∑
n=1

Rnbn sin(nθ).

Fourier inversion (or a simple calculation using uniform absolute convergence) then

shows that

Rnan =
1

π

∫ 2π

0

<(g(Reiθ)) cos(nθ)dθ,

Rnbn = − 1

π

∫ 2π

0

<(g(Reiθ)) sin(nθ)dθ.

Moreover, we see that
∫ 2π

0
<(g(Reiθ))dθ = g(0) = 0. Therefore

|cn| ≤ 2 max(|an|, |bn|) ≤
2

πRn

∫ 2π

0

∣∣∣<(g(Reiθ)
∣∣∣dθ

=
2

πRn

∫ 2π

0

(∣∣∣<(g(Reiθ)
∣∣∣+ <(g(Reiθ))

)
dθ

≤ 8

Rn
max
|z|=R

<(g(z)) =
8

Rn
max
|z|=R

<(f(z)− f(0)). �

Lemma 9.2 (Partial fraction approximation for analytic functions). Let f(z) be

an analytic function on the disk |z| ≤ R with f(0) 6= 0. Let z1, . . . , zk ∈ C denote

the zeros of f in the disk |z| ≤ R/2, listed with multiplicity. Then for |z| ≤ 9R/20

we have ∣∣∣f ′(z)
f(z)

−
k∑
j=1

1

z − zj

∣∣∣� 1

R
max
|z|=R

log
∣∣∣f(z)

f(0)

∣∣∣
Proof. Let

g(z) =
f(z)∏k

j=1(z − zj)
,
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and G(z) = log(g(z)/g(0)). Provided we are in a region where G(z) is analytic, we

have

f ′(z)

f(z)
−

k∑
j=1

1

z − zj
=

∂

∂z
G(z).

The function g(z) has no zeros in the region |z| ≤ R/2, since we have removed

all the zeros from f . Moreover, g is analytic in the region |z| ≤ R since it only

has removable singularities in this region and both the numerator and denominator

are analytic. Thus the function G(z) = log(g(z)/g(0)) is analytic in the region

|z| ≤ R/2, and so has a Taylor expansion

G(z) =

∞∑
n=1

cnz
n

valid for |z| ≤ R/2. By Lemma 9.1, we have that

|cn| ≤
8

(R/2)n
max
|z|=R/2

<(G(z)) =
8

(R/2)n
max
|z|=R/2

log
∣∣∣g(z)

g(0)

∣∣∣
=

8

(R/2)n
log
(

max
|z|=R/2

∣∣∣g(z)

g(0)

∣∣∣).
By the maximum modulus principle

max
|z|=R/2

∣∣∣g(z)

g(0)

∣∣∣ ≤ max
|z|=R

∣∣∣g(z)

g(0)

∣∣∣ = max
|z|=R

∣∣∣f(z)

f(0)

k∏
j=1

zj
z − zj

∣∣∣.
Since |zj | ≤ R/2 for all j, we have |zj |/|z − zj | ≤ 1 for |z| = R. Thus

|cn| ≤
8

(R/2)n
max
|z|=R

log
∣∣∣f(z)

f(0)

∣∣∣.
But now we have for |z| ≤ 9R/20∣∣∣f ′(z)

f(z)
−

k∑
j=1

1

z − zj

∣∣∣ = |G′(z)| =
∣∣∣ ∞∑
n=1

cnnz
n−1
∣∣∣

≤ 16

R

(
max
|z|=R

log
∣∣∣f(z)

f(0)

∣∣∣) ∞∑
n=1

n
( 9

10

)n−1
� 1

R
max
|z|=R

log
∣∣∣f(z)

f(0)

∣∣∣. �

Lemma 9.3 (Size of analytic function controls density of zeros). Let f(z) be

an analytic function on the disk |z| ≤ R then the number of zeros of f in the disk

|z| < R/2 is bounded by

2 max
|z|=R

log
∣∣∣f(z)

f(0)

∣∣∣.
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Proof. If |z| = R then

|z − z`| = |z − z`| =
∣∣∣zz − zz`

z

∣∣∣ =
∣∣∣R2 − zz`

R

∣∣∣.
Thus if f(z) has zeros z1, . . . , zk in the disk |z| < R/2, then the function

h(z) = f(z)

k∏
j=1

( R2 − zz`
R(z − z`)

)
is analytic on |z| ≤ R and has |h(z)| = |f(z)| if |z| = R. Therefore, by the maximum

modulus principle

max
|z|=R

|f(z)| = max
|z|=R

|h(z)| ≥ |h(0)| = |f(0)|
k∏
j=1

R

|zj |
≥ |f(0)|2k.

Thus the number of zeros k satisfies

k ≤ 1

log 2
max
|z|=R

log
∣∣∣f(z)

f(0)

∣∣∣. �

Lemma 9.4 (Zeros of ζ(s) are not too dense). The number of non-trivial zeros

ρ of ζ(s) with t ≤ =(ρ) ≤ t+ 1 is O(log(2 + |t|)).

Proof. The result is trivial for t ≤ 10 since ζ(s) can have only finitely many

zeros in the region <(s) ∈ [0, 1], |=(s)| ≤ 10. Therefore let |t| ≥ 10. Let g(z) =

ζ(1 + 1/100 + z + it) and R = 3, so g(z) is analytic in |z| < R. By Lemma 4.5 we

have |g(z)| � t3 for |z| = R, and for all t we have

|g(0)| = |ζ(1 + 1/100 + it)| ≥
∏
p

(
1 +

1

p1+1/100

)−1
> 0.

Therefore, by Lemma 9.3, g(z) can have O(log |t|) zeros with |z| < 3/2. But this

means that ζ(s) can have at most O(log |t|) zeros with =(ρ) ∈ [t − 1/2, t + 1/2],

since these are all zeros of g(z) with |z| < R. This gives the result. �

Lemma 9.5 (Partial fraction expansion of ζ(s)). Let s = σ+ it with σ ≥ −1/4.

Then we have

ζ ′

ζ
(s) =

−1

s− 1
+

∑
|ρ−s|≤1/10

1

s− ρ
+O(log(|t|+ 2)).

Here the sum is over zeros ρ of ζ(s) with each zero of multiplicity m occurring m

times.

Proof. Again, the result is trivial for |t| < 10, since in this region ζ ′(s)/ζ(s) is

O(1) unless it is close to one of the finite number of poles, in which case ζ ′(s)/ζ(s) =

−1/(s− 1) +O(1) if s is close to 1, or ζ ′(s)/ζ(s) = 1/(s− ρ) +O(1) if s is close to

a zero ρ.
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Therefore let |t| ≥ 10. Let g(z) = ζ(1 + 1/100 + z + it) and R = 3 again, so

g(0) � 1 uniformly in t and |g(z)| � 1 + t3 for |z| ≤ R. We see that the zeros

of g(z) with |z| ≤ R/2 are of the form ρ − 1 − 1/100 − it for zeros ρ of ζ(s) with

|ρ− 1− 1/100− it| ≤ 3/2. Now by Lemma 9.2 we have for |z| < 27/20

g′(z)

g(z)
=

∑
|ρ−1−1/100−it|≤3/2

1

z − ρ+ 1 + 1/100 + it
+O(log(2 + |t|)).

We let z = σ−1−1/100, so g(z) = ζ(σ+it), and note that |z| < 27/20 if σ ≥ −1/4.

ζ ′(σ + it)

ζ(σ + it)
=

∑
|ρ−1−1/100−it|≤3/2

1

σ + it− ρ
+O(log(2 + |t|)).

We see that the set of ρ with |ρ − 1 − 1/100 − it| ≤ 3/2 contains all ρ with

|ρ − σ − it| ≤ 1/10 since σ ≥ −1/4. Since there are O(log t) zeros in the sum

and any zero with |ρ− σ − it| ≥ 1/10 contributes O(1), we see that∑
|ρ−1−1/100−it|≤3/2

1

σ + it− ρ
=

∑
|ρ−σ−it|≤1/10

1

σ + it− ρ
+O(log t).

Substituting this in above gives the result.

Those zeros in the sum with |ρ− s| ≥ 1/10 can be absorbed into the error term

by Lemma 9.4. This gives the result. �

Corollary 9.6 (Size of ζ ′/ζ(s) controlled away from zeros). Let s = σ + it

with σ ≥ −1/4. If s is a distance at least � 1/ log(2 + |t|) from all zeros of ζ(s)

and from 1 then
ζ ′

ζ
(s) = O(log(2 + |t|)2).

Proof. This follows immediately from Lemma 9.4 and Lemma 9.5. �



CHAPTER 10

The Explicit Formula

Lemma 10.1 (Computation of residues). We have for <(s0) ≥ −1

Res
s=s0

ζ ′

ζ
(s)

xs

s
=



−x, s0 = 1,

m
xs0

s0
, s0 a zero of zeta with multiplicity m,

ζ′

ζ (0), s0 = 0,

0, otherwise.

Proof. The function xs has no poles in the complex plane, and the function

1/s has a simple at 0 and no other poles. By Lemma 7.8, ζ ′/ζ(s) has a simple pole

at s = 1 and a simple pole at each zero of ζ(s). Thus the function

xs

s

ζ ′

ζ
(s)

has a simple pole at s = 1, a simple pole at s = ρ for each zero of ζ(s), and a simple

pole at s = 0. We want to calculate the residues at each of these poles, and this is

easy since they are all simple poles. The residue at s = 1 is

lim
s→1

(s− 1)
ζ ′

ζ
(s)

xs

s
= −x.

If ζ has a zero ρ of multiplicity mρ, the residue at s = ρ is

lim
s→ρ

(s− ρ)
ζ ′

ζ
(s)

xs

s
= mρ

xρ

ρ
.

Finally, the residue at s = 0 is

lim
s→0

xs
ζ ′

ζ
(s) =

ζ ′

ζ
(0)

which is just some constant (in fact, it is equal to log 2π). �

Theorem 10.2 (The explicit formula). For any T ≥ 2 we have

ψ(x) = x−
∑

|=(ρ)|≤T

xρ

ρ
+O

(x(log x+ log T )3

T
+

(log T )3

x1/4

)
.

Here the summation is over all non-trivial zeros of ζ(s), occurring with multiplicity.
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Proof. By Lemma 8.3, for any choice of 2 ≤ T1 ≤ 2x, we have

ψ(x) =
−1

2πi

∫ c+iT1

c−iT1

xs
ζ ′

ζ
(s)

ds

s
+O

(x(log x)3

T1

)
.

where c = 1 + 1/ log x. We want to estimate this integral using Cauchy’s residue

theorem applied to the box with corners c−iT1, c+iT1, −1/4+iT1 and −1/4−iT1.

This gives

2πi
∑
s0

Res
s=s0

xs
ζ ′

ζ
(s)

ds

s
=

∫ c+iT1

c−iT1

xs
ζ ′

ζ
(s)

ds

s
+

∫ −1/4+iT1

c+iT1

xs
ζ ′

ζ
(s)

ds

s

+

∫ −1/4−iT1

−1/4+iT1

xs
ζ ′

ζ
(s)

ds

s
+

∫ c−iT1

−1/4−iT1

xs
ζ ′

ζ
(s)

ds

s
,

provided that all these straight line contours avoid any poles, and where the sum

over s0 is over all poles of xs ζ
′

ζ (s)/s in the box. We choose T1 so that T1 ≈ T and

the horizontal contours stay away from the zeros of ζ(s). By Lemma 9.4 there are

O(log T ) zeros of ζ(s) with imaginary part between T and T + 1 or between −T
and −T − 1. Therefore there is some T1 ∈ [T, T + 1] such that all zeros of ζ(s)

satisfy

||=(ρ)| − T1| �
1

log T1
.

Thus, with this choice of T1, by Corollary 9.6, along the second, third and fourth

integrals above we have
ζ ′

ζ
(s) = O(log T )2.

Therefore, bounding the integrand by its absolute value∫ −1/4+iT1

c+iT1

xs
ζ ′

ζ
(s)

ds

s
� xc(log T )2

T
� x(log T )2

T
,

and we get exactly the same bound for the integral between −1/4− iT1 and c− iT1.

For the integral between −1/4 + iT1 and −1/4− iT1 we have∫ −1/4−iT1

−1/4+iT1

xs
ζ ′

ζ
(s)

ds

s
� (log T )2

x1/4

∫ T1

−T1

dt

1 + |t|
� (log T )3

x1/4
.

By Lemma 10.1 we have∑
s0

Res
s=s0

xs
ζ ′

ζ
(s)

ds

s
= −x+

∑
ρ

|=(ρ)|≤T1

xρ

ρ

where the sum is over all non-trivial zeros of ζ(s) appearing with multiplicity. Thus

we find that

1

2πi

∫ c+iT1

c−iT1

xs
ζ ′

ζ
(s)

ds

s
= x−

∑
ρ

|=(ρ)|≤T1

xρ

ρ
+O

( (log T )3

x1/4
+
x(log T )3

T

)
.
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Finally, we see that there are O(log T ) zeros ρ with T ≤ |=(ρ)| ≤ T1 and they each

contribute O(x/T ). Thus we find

ψ(x) =
−1

2πi

∫ c+iT1

c−iT1

xs
ζ ′

ζ
(s)

ds

s
+O

(x(log x)3

T

)
= x−

∑
ρ

|=(ρ)|≤T1

xρ

ρ
+O

( (log T )3

x1/4
+
x(log T )3

T
+
x(log x)3

T

)

= x−
∑
ρ

|=(ρ)|≤T

xρ

ρ
+O

( (log T )3

x1/4
+
x(log T )3

T
+
x(log x)3

T

)
.

Recalling that we assume T ≤ 2x, we see the O(x(log x)3/T ) is the largest error

term, and this gives the result. �

Corollary 10.3 (Error term under RH). Assume that all non-trivial zeros ρ

of ζ(s) have <(ρ) = 1/2. Then we have

#{p < x} = π(x) =

∫ x

2

dt

log t
+O(x1/2 log x).

Proof. Apply Theorem 10.2 with T = x. This gives

ψ(x) = x−
∑
ρ

|=(ρ)|≤x

xρ

ρ
+O(log x)3.

There are O(log(j + 1)) zeros with |=(ρ)| ∈ [j, j + 1] by Lemma 9.4, and if the real

parts are all equal to 1/2 then each one contributes O(x1/2/(j + 1)) to the sum

above. Thus we have

ψ(x) = x+O
(
x1/2

∑
0≤j≤x

log(j + 1)

j + 1
+ (log x)3

)
= x+O(x1/2(log x)2).

Thus by Lemma 3.4, we have

θ(x) = ψ(x) +O(x1/2 log x) = x+O(x1/2(log x)2).

Now Lemma 2.3 gives the result. �





CHAPTER 11

The Prime Number Theorem

Proof idea. In the explicit formula, the contribution from zeros is small un-

less there are some zeros very close to the line <(s) = 1. If there is a zero

ρ0 = β0+iγ0 with β0 very close to 1, then by continuity we expect ζ(σ+iγ0) ≈ 0 even

when σ is slightly larger than 1. In this region 1/ζ(σ+iγ0) =
∏
p(1−p−σ−iγ0), which

must be very large. But we would guess that this should only happen if piγ0 ≈ −1

for many primes p so as to make the individual terms in the product large. But

then p2iγ0 ≈ 1 for many primes p, and so ζ(σ + 2iγ0) =
∏
p(1− p−σ−2iγ0)−1 must

be very large. But we know that ζ(s) has no poles in s > 1 and can’t grow too

much, which means that this cannot be the case. �

Lemma 11.1 (Size of ζ ′/ζ at σ + it controlled by size at σ + 2it). Let σ > 1.

Then we have

8<
(ζ ′
ζ

(σ + it)
)
≤ −2<

(ζ ′
ζ

(σ + 2it)
)
− 6

ζ ′

ζ
(σ).

Proof. We see that |pit| = 1, and so using the triangle inequality

(11.1) |1− p2it|2 = |pit − p−it|2 ≤ 2|p−it + 1|2 + 2| − 1− p−it|2 = 4|pit + 1|2.

We recall that for σ > 1

ζ ′

ζ
(σ + it) = −

∑
n≥1

Λ(n)

nσ+it
= −

∑
m≥1

∑
p

log p

pmσ+imt
.

Since |1− pit|2 = 2(1−<(pit)), we have∑
m≥1

∑
p

log p

pmσ

∣∣∣1− 1

p2imt

∣∣∣2 = 2<

(∑
m≥1

∑
p

log p

pmσ

(
1− 1

p2imt

))

= −2
ζ ′

ζ
(σ) + 2<

(ζ ′
ζ

(σ + 2it)
)
,

and similarly since |1 + pit|2 = 2(1 + <(pit)), we have∑
m≥1

∑
p

log p

pmσ

∣∣∣1 +
1

pimt

∣∣∣2 = −2
ζ ′

ζ
(σ)− 2<

(ζ ′
ζ

(σ + it)
)
.
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Thus the inequality (11.1) gives

−2
ζ ′

ζ
(σ) + 2<

(ζ ′
ζ

(σ + 2it)
)
≤ −8

ζ ′

ζ
(σ)− 8<

(ζ ′
ζ

(σ + it)
)
,

which rearranges to give the result. �

Lemma 11.2 (Large real parts near zeros). Let ρ0 = β0 + iγ0 be a zero of ζ(s).

Then we have for σ > 1

<
(ζ ′
ζ

(σ + iγ0)
)
≥ 1

σ − β0
−O(log(2 + |γ0|)),

<
(ζ ′
ζ

(σ + 2iγ0)
)
≥ −O(log(2 + |γ0|)).

Proof. Since ζ(s) is non-zero on the real line, any zero β0 + iγ0 must have

|γ0| � 1. Then, by Lemma 9.5

<
(ζ ′
ζ

(σ + iγ0)
)

=
∑

|ρ−σ−iγ0|≤1/10

<
( 1

σ + iγ0 − ρ

)
+O(log(|γ0|+ 2))

=
∑

ρ=β+iγ
|ρ−σ−iγ0|≤1/10

σ − β
(σ − β)2 + (γ − γ0)2

+O(log(|γ0|+ 2)).

Since σ > 1 ≥ <(ρ) for all zeros ρ, we see that all terms in the sum contribute a

positive quantity, and so we can drop all but the zero ρ0 for a lower bound. This

gives

<
(ζ ′
ζ

(σ + iγ0)
)
≥ 1

σ − β0
−O(log(2 + |γ0|)).

Similarly, we can drop all terms in the corresponding sum for <(ζ ′/ζ(σ+ 2iγ0)) for

a lower bound, giving

<
(ζ ′
ζ

(σ + 2iγ0)
)
≥ −O(log(2 + |γ0|)). �

Theorem 11.3 (The zero free region). There is a constant c > 0 such that if

ζ(σ + it) = 0 then

σ ≤ 1− c

log(2 + |t|)
.

Proof. Assume for a contradiction that there is a zero ρ0 = β0 + iγ0 with β0

very close to 1. By Lemma 11.2 we have for σ > 1

8<
(ζ ′
ζ

(σ + iγ0)
)

+ 2<
(ζ ′
ζ

(σ + 2iγ0)
)
≥ 8

σ − β0
−O(log(2 + |γ0|)).

On the other hand, ζ ′/ζ(σ) = −1/(σ − 1) +O(1). Thus Lemma (11.1) gives

8

σ − β0
≤ 6

σ − 1
+O(log(2 + |γ0|)).
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We now set σ = 1 + δ/ log(|γ0| + 2). If δ is chosen to be a small enough constant

then the right hand side is less than 7/(σ − 1). Thus we have

8

σ − β0
≤ 7

σ − 1
,

which rearranges to

β ≤ 8− σ
7

= 1− δ

7 log(2 + |γ0|)
.

This gives the result. �

Theorem 11.4 (The Prime Number Theorem). There is a constant c > 0 such

that

π(x) =

∫ x

2

dt

log t
+O

(
x exp(−c

√
log x)

)
.

In particular,

π(x) =
x

log x
+ o
( x

log x

)
.

Proof. We apply Lemma 10.2 to find that for 2 ≤ T ≤ x

ψ(x) = x−
∑

|=(ρ)|≤T

xρ

ρ
+O

(x(log x)3

T

)
.

By Theorem 11.3 for each term ρ in the sum we have

|xρ| = x<(ρ) ≤ x1−c/ log T ,

for some suitable constant c > 0. Thus

ψ(x) = x+O
(
x1−c/ log T

∑
|=(ρ)|≤T

1

|ρ|

)
+O

(x(log x)3

T

)
.

Since there are O(log(1 + j)) zeros with |=(ρ)| ∈ [j, j + 1], we see that the sum is

of size O(log T )2. Thus we have

ψ(x) = x+O
(
x1−c/ log T (log T )2

)
+O

(x(log x)3

T

)
.

We now choose T = exp(
√

log x) to balance the size of the two error terms. Thus,

for a suitable constant c′

ψ(x) = x+O
(
x exp(−c′

√
log x)

)
.

Now, by partial summation, we find

π(x) =
ψ(x)

log x
−
∫ x

2

ψ(t)

log2 t
dt =

∫ x

2

dt

log t
+O

(
x exp(−c′

√
log x)

)
. �





CHAPTER 12

Primes in Short Intervals

We will use the following two facts, whose proofs are more involved and we will

not give here.

Fact 12.1 (Improved zero free region). There is a constant c > 0 such that if

ζ(σ + it) = 0 then

σ ≤ 1− c

log(2 + |t|)2/3 log log(3 + |t|)1/3
.

Fact 12.2 (Zero Density Estimate). Let N(σ, T ) denote the number of zeros ρ

of ζ(s) such that <(ρ) ≥ σ and |=(ρ)| ≤ T . Then, for any ε > 0 there is a constant

C(ε) > 0 such that for T ≥ 1 and σ ≥ 1/2

N(σ, T ) ≤ C(ε)T
12+ε

5 (1−σ).

Theorem 12.3 (Primes in short intervals). Let ε > 0 and x be large enough in

terms of ε. Then for x7/12+ε ≤ y ≤ x we have

#{p ∈ [x, x+ y]} =
y

log x
+ o
( y

log x

)
.

Proof. By the Explicit Formula (Theorem 10.2), we have for 2 ≤ T ≤ x and

for y ≤ x

ψ(x+ y) = x+ y −
∑

|=(ρ)|≤T

(x+ y)ρ

ρ
+O

(x(log x)3

T

)
,

ψ(x) = x−
∑

|=(ρ)|≤T

xρ

ρ
+O

(x(log x)3

T

)
.

Thus

ψ(x+ y)− ψ(x) = y +
∑

|=(ρ)|≤T

O
(∣∣∣ (x+ y)ρ − xρ

ρ

∣∣∣)+O
(x(log x)3

T

)
.

Consider the contribution of zeros which have

σ1 ≤ <(ρ) ≤ σ1 +
1

log x

for some 1/2 ≤ σ1 ≤ 1. We see that for each such zero∣∣∣ (x+ y)ρ − xρ

ρ

∣∣∣ =
∣∣∣∫ x+y

x

tρ−1dt
∣∣∣ ≤ ∫ x+y

x

t<(ρ)−1dt� yxσ1−1.

39
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By Fact 12.1, there are no such zeros unless σ1 ≤ 1 − c′/(log x)4/5 for some con-

stant c′ > 0 (recall T ≤ x). If this is the case, then by Fact 12.2 there are

O(T (12/5+ε)(1−σ1)) such zeros. Thus the total contribution is

� T (12/5+ε)(1−σ1)yxσ1−1 � y
(T 12/5+ε

x

)1−σ1

.

If T 12/5+ε ≤ x1−ε then since 1− σ1 ≥ c′/(log x)4/5, this is

� y(xε)−c
′/(log x)4/5 � y exp

(
−c′ε(log x)1/5

)
.

All zeros ρ with <(ρ) ≥ 1/2 satify j/ log x ≤ <(ρ) ≤ (j + 1)/ log x for some integer

j ≤ log x. Thus we see that all zeros with <(ρ) ≥ 1/2 appearing in the sum

contribute a total

� log(x) · y exp
(
−c′ε(log x)1/5

)
� y

log x
.

The zeros with <(ρ) ≤ 1/2 contribute O(x1/2 log x) in total, as in Corollary 10.3.

Thus if T 12/5+ε ≤ x1−ε we find

ψ(x+ y)− ψ(x) = y +O
( y

log x

)
+O(x1/2 log x) +O

(x(log x)3

T

)
.

If we choose T such that T 12/5+ε = x1−ε, this simplifies to

ψ(x+ y)− ψ(x) = y + o(y) + o(x7/12+ε).

In particular for y ≥ x7/12+ε, this gives ψ(x + y) − ψ(x) = y + o(y). Partial

summation then gives the result. �

Theorem 12.4 (Primes in almost all short intervals). Let ε > 0 and 2 ≤ x and

1 ≥ δ ≥ x−5/6+ε. Then for all but o(x) values of t ≤ x we have

#{p ∈ [t, t+ δt]} =
δt

log t
+ o
( δt

log t

)
.

Proof. By parital summation, it suffices to show that for all but o(x) values

of t ≤ x we have

ψ(t+ δt)− ψ(t) = δt+ o(δt).

Imagine for a contradiction that there is a constant ε > 0 such that the set S ⊂ [0, x]

for which |ψ(t+ δt)− ψ(t)− δt| ≥ εδt has measure ≥ εx. Then we see that∫ x

0

∣∣∣ψ(t+ δt)− ψ(t)− δt
∣∣∣2dt ≥ ∫

S

∣∣∣ψ(t+ δt)− ψ(t)− δt
∣∣∣2dt� ε3δ2x3.

Therefore to get a contradiction it suffices to show that∫ x

0

∣∣∣ψ(t+ δt)− ψ(t)− δt
∣∣∣2dt = o(δ2x3).
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As in the proof of Theorem 12.3, by the Explicit Formula we see that

ψ(t+ δt)− ψ(t)− δt =
∑

|=(ρ)|≤T

tρ
(

(1 + δ)ρ − 1
)

ρ
+O

( t(log t)3

T

)
for any 2 ≤ T ≤ x. Since (a+ b)2 � a2 + b2, we find∫ x

0

∣∣∣ψ(t+ δt)−ψ(t)− δt
∣∣∣2dt� ∫ x

0

∣∣∣ ∑
|=(ρ)|≤T

tρ
(

(1 + δ)ρ − 1
)

ρ

∣∣∣2dt+O
(x3(log x)6

T 2

)
.

Expanding the sum and performing the integration gives∫ x

0

∣∣∣ ∑
|=(ρ)|≤T

tρ
(

(1 + δ)ρ − 1
)

ρ

∣∣∣2dt
=

∑
|=(ρ1)|≤T

∑
|=(ρ2)|≤T

(
(1 + δ)ρ1 − 1

)(
(1 + δ)ρ2 − 1

)
ρ1ρ2

∫ x

0

tρ1+ρ2dt

=
∑

|=(ρ1)|≤T

∑
|=(ρ2)|≤T

(
(1 + δ)ρ1 − 1

)(
(1 + δ)ρ2 − 1

)
ρ1ρ2

( xρ1+ρ2+1

ρ1 + ρ2 + 1

)
.

As in the proof of Theorem 12.3, we have that |((1 + δ)ρ − 1)/ρ| � δ. We also see

that |xρ1+ρ2 | � x2<(ρ1) + x2<(ρ2). Thus, by symmetry we obtain the bound

� δ2
∑

|=(ρ1)|≤T

x2<(ρ1)+1
∑

|=(ρ2)|≤T

1

|ρ1 + ρ2 + 1|
.

Since there are O(log(j + 1)) zeros ρ with |=(ρ)| ∈ [j, j + 1], the inner sum is

O(log T )� log x. Thus we have shown that∫ x

0

∣∣∣ψ(t+ δt)− ψ(t)− δt
∣∣∣2dt� δ2x log x

∑
|=(ρ)|≤T

x2<(ρ) +
x3(log x)6

T 2
.

We bound the inner sum in an analogous way to the proof of Theorem 12.3 by

considering those zeros ρ with <(ρ) ∈ [σ1, σ1 + 1/ log x] for some σ1 ≥ 1/2. There

are no such zeros if σ1 ≥ 1−c′/(log x)4/5, and otherwise there are O(T (12/5+ε)(1−σ1))

zeros. Each zero contributes O(x2σ1) to the sum, so the total contribution is

� x2
(T 12/5+ε

x2

)1−σ1

.

Thus, provided T 12/5+ε ≤ x2−ε, we find that these zeros contributeO(x2 exp(−εc′(log x)1/5).

By considering σ1 = j/ log x for an integer j ≤ log x, we see that the total contri-

bution from all of the zeros with <(ρ) ≥ 1/2 is

� (log x)x2 exp
(
−c′ε(log x)1/5

)
= o
( x2

log x

)
.
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The contribution from zeros with <(ρ) ≤ 1/2 is O(xT log T ) = o(x2/ log x). There-

fore, putting this together we see∫ x

0

∣∣∣ψ(t+ δt)− ψ(t)− δt
∣∣∣2dt = o(δ2x3),

as required. �
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