Question 1. Prove the following.
(i) $\log ^{4} X<X^{1 / 10}$ for all sufficiently large X;
(ii) $e^{\sqrt{\log X}}=O_{\varepsilon}\left(X^{\varepsilon}\right)$ for all $\varepsilon>0$ and $X \geqslant 1$;
(iii) $X\left(1+e^{-\sqrt{\log X}}\right)+X^{3 / 4} \sin X \sim X$.

Question 2. Let $\operatorname{Li}(x):=\int_{2}^{x} \frac{d t}{\log t}$.
(i) Show that $\mathrm{Li}(x)=\frac{x}{\log x}+O\left(\frac{x}{(\log x)^{2}}\right)$ for $x \geq 3$.
(ii) Show that for any $k \geq 1, \operatorname{Li}(x)=\sum_{j=1}^{k} \frac{(j-1)!x}{(\log x)^{j}}+O_{k}\left(\frac{k!^{2} x}{(\log x)^{k+1}}\right)$ for $x \geq 3$.

Question 3. In the following exercise, $a(X), b(X) \geq 2$ are functions tending to ∞ as $X \rightarrow \infty$. For each statement below, either give a proof of its correctness or a counterexample.
(i) If $a(X) \sim b(X)$ then $\frac{a(X)}{\log (a(X))} \sim \frac{b(X)}{\log (b(X))}$.
(ii) If $a(X)-b(X) \rightarrow 0$ then $a(X) \sim b(X)$.
(iii) If $a(X) \sim b(X)$ then $a(X)-b(X) \rightarrow 0$.
(iv) If $a(X) \sim b(X)$ and $a^{\prime}(X):=\sum_{y \leqslant X} a(y), b^{\prime}(X):=\sum_{y \leqslant X} b(y)$ then $a^{\prime}(X) \sim b^{\prime}(X)$.
(v) If $a^{\prime}(X) \sim b^{\prime}(X)$ where $a^{\prime}(X):=\sum_{y \leqslant X} a(y), b^{\prime}(X):=\sum_{y \leqslant X} b(y)$, then $a(X) \sim b(X)$.

Question 4. Show that there are arbitrarily large gaps between consecutive primes by
(i) using the bound $\pi(x)=O(x / \log x)$;
(ii) considering the numbers $n!+2, \ldots, n!+n$.

Which of the two approaches gives the better bound?
Question 5. Assume that $\pi(x) \sim x / \log x$.
(i) Show that $p_{n} \sim n \log n$, where p_{n} denotes the nth prime.
(ii) Deduce that $p_{n+1} \sim p_{n}$ and $\sup _{p_{n} \leq x}\left(p_{n+1}-p_{n}\right)=o(x)$.

Question 6. Let X be an integer.
(i) Show that

$$
\log (X!)=\sum_{n \leq X} \log (n)
$$

and

$$
\log (X!)=\sum_{p \leq X} \log p\left(\left\lfloor\frac{X}{p}\right\rfloor+\left\lfloor\frac{X}{p^{2}}\right\rfloor+\ldots\right)
$$

(ii) Show that

$$
\sum_{n \leqslant X} \log n=X \log X-X+O(\log X)
$$

and so

$$
\sum_{p \leqslant X} \log p\left(\left\lfloor\frac{X}{p}\right\rfloor+\left\lfloor\frac{X}{p^{2}}\right\rfloor+\ldots\right)=X \log X-X+O(\log X)
$$

(iii) Show that the contribution from the terms $\left\lfloor\frac{X}{p^{k}}\right\rfloor$ with $k \geqslant 2$ is $O(X)$.
(iv) Deduce Mertens' first estimate

$$
\sum_{p \leqslant X} \frac{\log p}{p}=\log X+O(1)
$$

Explain why this remains valid even if X is not necessarily an integer.
Question 7. Using Mertens' first estimate above, prove the second Mertens estimate: we have

$$
\sum_{p \leqslant X} \frac{1}{p}=\log \log X+O(1)
$$

Deduce that there are constants $c_{1}, c_{2}>0$ such that

$$
\frac{c_{1}}{\log X} \leqslant \prod_{p \leqslant X}\left(1-\frac{1}{p}\right) \leqslant \frac{c_{2}}{\log X}
$$

Question 8. Let p_{n} denote the nth prime.
(i) Is it the case that, for sufficiently large n, the sequence $p_{n+1}-p_{n}$ is strictly increasing?
(ii) Is it the case that, for sufficiently large n, the sequence $p_{n+1}-p_{n}$ is nondecreasing?

