Exercises 1

Question 1. Prove the following.

- (i) $\log^4 X < X^{1/10}$ for all sufficiently large X;
- (ii) $e^{\sqrt{\log X}} = O_{\varepsilon}(X^{\varepsilon})$ for all $\varepsilon > 0$ and $X \ge 1$;
- (iii) $X(1 + e^{-\sqrt{\log X}}) + X^{3/4} \sin X \sim X.$

Question 2. Let $\operatorname{Li}(x) := \int_2^x \frac{dt}{\log t}$.

- (i) Show that $\operatorname{Li}(x) = \frac{x}{\log x} + O\left(\frac{x}{(\log x)^2}\right)$ for $x \ge 3$.
- (ii) Show that for any $k \ge 1$, $\operatorname{Li}(x) = \sum_{j=1}^{k} \frac{(j-1)!x}{(\log x)^j} + O_k\left(\frac{k!^2x}{(\log x)^{k+1}}\right)$ for $x \ge 3$.

Question 3. In the following exercise, $a(X), b(X) \ge 2$ are functions tending to ∞ as $X \to \infty$. For each statement below, either give a proof of its correctness or a counterexample.

- (i) If $a(X) \sim b(X)$ then $\frac{a(X)}{\log(a(X))} \sim \frac{b(X)}{\log(b(X))}$.
- (ii) If $a(X) b(X) \to 0$ then $a(X) \sim b(X)$.
- (iii) If $a(X) \sim b(X)$ then $a(X) b(X) \to 0$.
- (iv) If $a(X) \sim b(X)$ and $a'(X) := \sum_{y \leqslant X} a(y)$, $b'(X) := \sum_{y \leqslant X} b(y)$ then $a'(X) \sim b'(X)$.
- (v) If $a'(X) \sim b'(X)$ where $a'(X) := \sum_{y \leqslant X} a(y), b'(X) := \sum_{y \leqslant X} b(y)$, then $a(X) \sim b(X)$.

Question 4. Show that there are arbitrarily large gaps between consecutive primes by

- (i) using the bound $\pi(x) = O(x/\log x)$;
- (ii) considering the numbers $n! + 2, \ldots, n! + n$.

Which of the two approaches gives the better bound?

Question 5. Assume that $\pi(x) \sim x/\log x$.

- (i) Show that $p_n \sim n \log n$, where p_n denotes the *n*th prime.
- (ii) Deduce that $p_{n+1} \sim p_n$ and $\sup_{p_n < x} (p_{n+1} p_n) = o(x)$.

Question 6. Let X be an integer.

(i) Show that

$$\log(X!) = \sum_{n \le X} \log(n),$$

and

$$\log(X!) = \sum_{p \le X} \log p \left(\lfloor \frac{X}{p} \rfloor + \lfloor \frac{X}{p^2} \rfloor + \dots \right).$$

(ii) Show that

$$\sum_{n \leqslant X} \log n = X \log X - X + O(\log X),$$

and so

$$\sum_{p \leqslant X} \log p\left(\lfloor \frac{X}{p} \rfloor + \lfloor \frac{X}{p^2} \rfloor + \dots\right) = X \log X - X + O(\log X).$$

- (iii) Show that the contribution from the terms $\lfloor \frac{X}{p^k} \rfloor$ with $k \ge 2$ is O(X).
- (iv) Deduce Mertens' first estimate

$$\sum_{p \le X} \frac{\log p}{p} = \log X + O(1).$$

Explain why this remains valid even if X is not necessarily an integer.

Question 7. Using Mertens' first estimate above, prove the second Mertens estimate: we have

$$\sum_{p \leqslant X} \frac{1}{p} = \log \log X + O(1).$$

Deduce that there are constants $c_1, c_2 > 0$ such that

$$\frac{c_1}{\log X} \leqslant \prod_{p \leqslant X} (1 - \frac{1}{p}) \leqslant \frac{c_2}{\log X}$$

Question 8. Let p_n denote the *n*th prime.

- (i) Is it the case that, for sufficiently large n, the sequence $p_{n+1} p_n$ is strictly increasing?
- (ii) Is it the case that, for sufficiently large n, the sequence $p_{n+1} p_n$ is nondecreasing?

 $\tt james.maynard@maths.ox.ac.uk$