Question 1. Give a simple description of the function $\phi \star 1$.
Question 2. (i) Recall $\phi(n)=\#\{d \leq n: \operatorname{gcd}(d, n)=1\}$. Show that $\sum_{n} \phi(n) n^{-s}=\frac{\zeta(s-1)}{\zeta(s)}$ for $\Re s>2$.
(ii) Let $\sigma(n)=\sum_{d \mid n} d$. Show that $\sum_{n} \sigma(n) n^{-s}=\zeta(s) \zeta(s-1)$ for $\Re s>2$.
(iii) Let $\lambda(n)$ be the Liouville function, the completely multiplicative function equal to -1 on the primes. Show that $\sum_{n} \lambda(n) n^{-s}=\frac{\zeta(2 s)}{\zeta(s)}$ for $\Re s>1$.
(iv) Let $\tau_{k}(n)=\sum_{d_{1} \ldots d_{k}=n} 1$ be the number of ways of writing n as a product of k integers. Show that $\sum_{n} \tau_{k}(n) n^{-s}=\zeta(s)^{k}$ for $\Re s>1$.
Question 3. True or false: there is a constant C such that $\tau(n) \leqslant \log ^{C} n$ for all sufficiently large n. (Do not assume the prime number theorem.)
Question 4. (i) Show that for all $Y \geq 1$

$$
\frac{1}{Y} \sum_{n \geq 1} \Lambda(n)\left\lfloor\frac{Y}{n}\right\rfloor=\frac{1}{Y} \sum_{n \leqslant Y} \log n
$$

(ii) Show that

$$
\sum_{n \leq Y} \log n=Y \log Y+O(Y)
$$

(iii) Use part (i) and (ii) to show that

$$
\sum_{X / 2<n \leqslant X} \Lambda(n) \ll X
$$

(Hint: $\lfloor 2 x / d\rfloor-2\lfloor x / d\rfloor \geq 0$, and is 1 when $x<d \leq 2 x$.)
Question 5. Let $\Lambda_{k}(n)=\left(\mu \star \log ^{k}\right)(n)=\sum_{d e=n} \mu(d)(\log e)^{k}$. Show that
(i) $-\mu(n) \log n=\sum_{d e=n} \mu(d) \Lambda(e)$.
(ii) $\Lambda_{k+1}(n)=\Lambda_{k}(n) \log n+\left(\Lambda_{k} \star \Lambda\right)(n)$.
(iii) $\Lambda_{k}(n)=0$ unless n has at most k distinct prime factors.
(iv) If $n=p_{1} \ldots p_{k}$ (for distinct primes $\left.p_{1}, \ldots, p_{k}\right)$ then $\Lambda_{k}(n)=k!\left(\log p_{1}\right) \ldots\left(\log p_{k}\right)$.
(v) $0 \leq \Lambda_{k}(n) \leq(\log n)^{k}$.
(Hint: Use (ii) in subsequent parts!)
Question 6. Give an asymptotic for $\sum_{n \leqslant X} \phi(n)$.
(Hint: Using your answer to Question 1, or otherwise, first establish that the expression to be estimated is $\sum_{d \leqslant X} \mu(d) \sum_{m \leqslant X / d} m$.)

Question 7. (i) Show that

$$
\tau(n)=\sum_{\substack{d \mid n \\ d \leq n^{1 / 2}}} 1+\sum_{\substack{d \mid n \\ d<n^{1 / 2}}} 1
$$

(ii) Deduce that

$$
\sum_{n \leq x} \tau(n)=2 \sum_{d \leq x^{1 / 2}} \frac{x}{d}-x+O\left(x^{1 / 2}\right)
$$

(iii) Let γ be the constant

$$
\gamma=\int_{1}^{\infty} \frac{\{t\}}{t(t-\{t\})} d t
$$

(Recall $\{t\}=t-\lfloor t\rfloor$ is the fractional part of t.) Show that

$$
\gamma=\sum_{1 \leq d \leq x} \frac{1}{d}-\log x+O(1 / x)
$$

and deduce

$$
\sum_{n \leq x} \tau(n)=x \log x+(2 \gamma-1) x+O\left(x^{1 / 2}\right)
$$

Question 8. The aim of this question is to show that the prime number theorem implies that $M(X)=o(X)$, where $M(X):=\sum_{n \leqslant X} \mu(n)$.
(i) Prove that if $n \neq 1$ then

$$
-\mu(n) \log n=\sum_{a b=n} \mu(a)(\Lambda(b)-1) .
$$

(ii) Deduce that

$$
|M(X)| \leqslant \frac{1}{\log X} \sum_{a}\left|\sum_{b \leqslant X / a}(\Lambda(b)-1)\right|+o(X)
$$

(iii) Assuming the prime number theorem, show that indeed $M(X)=o(X)$.
james.maynard@maths.ox.ac.uk

