Question 1. Let $q>1$ be a positive integer. Let $e(x)=e^{2 \pi i x}$, so $e(x / q)$ is a well-defined function for $x \in \mathbb{Z} / q \mathbb{Z}$. For any function $f: \mathbb{Z} / q \mathbb{Z} \rightarrow \mathbb{C}$, define the discrete Fourier transform by

$$
\hat{f}(a):=\frac{1}{q} \sum_{b \in \mathbb{Z} / q \mathbb{Z}} f(b) e\left(\frac{-a b}{q}\right)
$$

for $a \in \mathbb{Z} / q \mathbb{Z}$.
(i) For each integer a, show that

$$
\sum_{b=1}^{q} e\left(\frac{a b}{q}\right)= \begin{cases}q, & \text { if } q \text { divides } a \\ 0, & \text { otherwise }\end{cases}
$$

(ii) Deduce the Fourier inversion formula:

$$
f(a)=\sum_{b \in \mathbb{Z} / q \mathbb{Z}} \hat{f}(b) e\left(\frac{a b}{q}\right) .
$$

(iii) Show Parseval's formula:

$$
\sum_{a \in \mathbb{Z} / q \mathbb{Z}}|f(a)|^{2}=q \sum_{b \in \mathbb{Z} / q \mathbb{Z}}|\hat{f}(b)|^{2} .
$$

Question 2. Define functions $F_{1}, F_{2}: \mathbb{R} \rightarrow \mathbb{R}$ by setting $F_{1}(x)=1$ if $|x| \leqslant 1$, and 0 otherwise; and $F_{2}(x)=1-|x|$ if $|x| \leqslant 1$, and 0 otherwise.
(i) Calculate $\hat{F}_{1}(\xi)$ and $\hat{F}_{2}(\xi)$, showing that they make sense for all $\xi \in \mathbb{R}$.
(ii) Show that $\int_{-\infty}^{\infty}\left|\widehat{F}_{1}(\xi)\right| d \xi$ is infinite, but that $\int_{-\infty}^{\infty}\left|\widehat{F}_{2}(\xi)\right| d \xi$ is finite.

Question 3. Show that the function $\zeta^{\prime}(s) / \zeta(s)$ has
(i) A simple pole at $s=\rho$, for every non-trivial zero ρ of $\zeta(s)$.
(ii) A simple pole at $s=-2,-4, \ldots$
(iii) A simple pole at $s=1$.
(iv) No other poles in the complex plane.

Question 4. Recall from lectures that for $\Re(s)>-2$ we have

$$
\zeta(s)=\frac{1}{s-1}+\frac{1}{2}+\frac{s}{12}-s(s+1)(s+2) \int_{1}^{\infty} \frac{\left(\{t\}-3\{t\}^{2}+2\{t\}^{3}\right) d t}{12 t^{s+3}}
$$

(i) Show, using induction, that for each integer $k \geq 2$ we have

$$
\zeta(s)=\frac{1}{s-1}+Q_{k}(s)+s(s+1) \ldots(s+k) \int_{1}^{\infty} \frac{P_{k}(\{t\})}{t^{s+k+1}}
$$

in the region $\Re(s)>-k$, for some polynomials Q_{k}, P_{k} with rational coefficients. Deduce that $\zeta(-(2 n+1))$ is a rational number of all positive integers n.
(ii) Show that

$$
\Gamma(1 / 2)=\pi^{1 / 2}
$$

Deduce from this that $\Gamma(1 / 2+n)$ is a rational multiple of $\pi^{1 / 2}$ for all integers n.
(iii) Deduce that $\zeta(2 n)$ is a rational multiple of $\pi^{2 n}$ for all positive integers n.

Question 5. Let $f, g \in \mathcal{S}(\mathbb{R})$, the set of Schwarz functions on \mathbb{R}.
(i) Show that

$$
\int_{-\infty}^{\infty} f(x) \hat{g}(x) d x=\int_{-\infty}^{\infty} \hat{f}(x) g(x) d x
$$

(ii) Let $r_{t}(x)=f(t x)$ and $s_{t}(x)=f(x+t)$. Show that

$$
\begin{aligned}
& \hat{r}_{t}(\xi)=\frac{\hat{f}(\xi / t)}{t} \\
& \hat{s}_{t}(\xi)=e^{2 \pi i \xi t} \hat{f}(\xi) .
\end{aligned}
$$

(iii) Let $h_{t}(x)=e^{-\pi x^{2} / t^{2}}$. Show that as $t \rightarrow \infty$

$$
\int_{-\infty}^{\infty} \hat{f}(x) h_{t}(x) d x \rightarrow \int_{-\infty}^{\infty} \hat{f}(x) d x
$$

and

$$
\int_{-\infty}^{\infty} f(x) \hat{h}_{t}(x) d x \rightarrow f(0)
$$

(iv) By applying (iii) to $s_{t}(x)$, deduce the Fourier inversion formula for $\mathcal{S}(\mathbb{R})$:

$$
f(x)=\int_{-\infty}^{\infty} \hat{f}(\xi) e^{2 \pi i x \xi} d \xi
$$

(v) Deduce Plancherel's formula

$$
\int_{-\infty}^{\infty}|f(x)|^{2} d x=\int_{-\infty}^{\infty}|\hat{f}(x)|^{2} d x
$$

Question 6. Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a smooth function such that $f(x)$ is non-zero only when $x \in[\alpha, \beta]$ for some finite $0<\alpha<\beta$. Define the Mellin Transform $F: \mathbb{C} \rightarrow \mathbb{C}$ by

$$
F(s):=\int_{0}^{\infty} f(x) x^{s-1} d x
$$

(i) Show that $g_{\sigma}(x)=f\left(e^{x}\right) e^{\sigma x}$ is a function in $\mathcal{S}(\mathbb{R})$ and that $F(\sigma+i t)=$ $\hat{g}_{\sigma}(-t / 2 \pi)$.
(ii) Using the Fourier inversion formula (Question 5 part (iv)), deduce the Mellin Inversion Formula: For any $\sigma \in \mathbb{R}$

$$
f(x)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} F(s) x^{-s} d s
$$

(iii) Let $h_{y}(x)=f(x / y)$. Show the Mellin transform satisfies $H_{y}(s)=y^{s} F(s)$. Deduce that

$$
\sum_{n=1}^{\infty} f\left(\frac{n}{y}\right)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} y^{s} F(s) \zeta(s) d s
$$

(iv) It is a fact that $\zeta(s) \ll|s|^{101}$ for $\Re(s)>-100$ and $|s-1| \geq 1$ (This follows from the formula in Question 4 (i))
Using this and the Cauchy residue theorem, deduce that

$$
\sum_{n=1}^{\infty} f\left(\frac{n}{y}\right)=y \int_{0}^{\infty} f(x) d x+O\left(y^{-100}\right)
$$

