Question 1. Prove that $\pi(X) \leqslant 2 \pi(X / 2)$ for X sufficiently large.
Question 2. Let p_{n} denote the $n^{\text {th }}$ prime. Prove that

$$
p_{n}=n \log n+n \log \log n+O(n) .
$$

Question 3. (i) Let $\theta \in(0,1)$ be such that $\Re(\rho) \leq \theta$ for all non-trivial zeros ρ. Deduce that for all $x \geq 2$

$$
\sum_{n<x} \Lambda(n)=x+O\left(x^{\theta}(\log x)^{2}\right)
$$

(ii) Let $\gamma \in(0,1)$ be such that for all $x \geq 2$

$$
\sum_{n<x} \Lambda(n)=x+O\left(x^{\gamma}\right)
$$

Show that $\Re(\rho) \leq \gamma$ for all zeros of $\zeta(s)$.
(Hint: Use partial summation to prove analytic continuation of ζ^{\prime} / ζ)
(iii) Let $\alpha \in(0,1)$ be fixed. Show that if for all $x \geq 2$ we have

$$
\sum_{n<x} \Lambda(n)=x+O\left(x^{\alpha} \exp (\sqrt{\log x})\right)
$$

then in fact

$$
\sum_{n<x} \Lambda(n)=x+O\left(x^{\alpha}(\log x)^{2}\right)
$$

Question 4. (i) Show that for $\Re(s)>1$ we have

$$
\log \zeta(s)=\sum_{p} \sum_{m=1}^{\infty} \frac{1}{m p^{m s}} .
$$

(ii) Show that $3+4 \cos (\theta)+\cos (2 \theta) \geq 0$.
(iii) Using (i) and (ii), show that for $\sigma>1$

$$
3 \log \zeta(\sigma)+4 \Re \log \zeta(\sigma+i t)+\Re \log (\zeta(\sigma+2 i t) \geq 0
$$

Deduce from this that for $\sigma>1$

$$
\zeta(\sigma)^{3}|\zeta(\sigma+i t)|^{4}|\zeta(\sigma+2 i t)| \geq 1
$$

(iv) Deduce from the above inequality that $\zeta(1+i t) \neq 0$.
(Hint: Consider $\sigma \rightarrow 1$)

Question 5. It is a fact that

$$
\sum_{n<x} \Lambda(n)=x-\sum_{\rho} \frac{x^{\rho}}{\rho}-\frac{\zeta^{\prime}(0)}{\zeta(0)}-\frac{1}{2} \log \left(1-x^{-2}\right)
$$

where the sum is understood to be the limit as $T \rightarrow \infty$ of $\sum_{|\Im(\rho)| \leq T} x^{\rho} / \rho$ over non-trivial zeros ρ (it is not absolutely convergent).
(i) Using this fact, show that $\zeta(s)$ must have at least one non-trivial zero.
(ii) Show that if ρ is a non-trivial zero of $\zeta(s)$, then so is $1-\rho$.
(iii) Let $\epsilon>0$. Using Question 3, deduce that we cannot have for all $x \geq 2$ that

$$
\sum_{n<x} \Lambda(n)=x+O\left(x^{1 / 2-\epsilon}\right)
$$

Question 6. Recall from Sheet 3 Q6: If $f: \mathbb{R} \rightarrow \mathbb{C}$ is smooth and non-zero only on some interval $[\alpha, \beta] \subseteq(0, \infty)$ then for any $\sigma \in \mathbb{R}$

$$
f\left(\frac{n}{y}\right)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} F(s) \frac{y^{s}}{n^{s}} d s
$$

where $F(s)=\int_{0}^{\infty} f(x) x^{s-1} d x$ is a smooth function with $|F(\sigma+i t)| \ll 1 /|t|^{100}$ and with no zeros or poles.
(i) Show that

$$
\sum_{n=1}^{\infty} \Lambda(n) f\left(\frac{n}{y}\right)=\frac{-1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} y^{s} F(s) \frac{\zeta^{\prime}(s)}{\zeta(s)} d s
$$

(ii) Deduce that

$$
\sum_{n=1}^{\infty} \Lambda(n) f\left(\frac{n}{y}\right)=y \int_{0}^{\infty} f(t) d t-\sum_{\rho} y^{\rho} F(\rho)+O\left(y^{-1 / 4}\right)
$$

where \sum_{ρ} is a sum over all non-trivial zeros of $\zeta(s)$ with multiplicity.
Question 7. For this question you may use the following fact: $|\zeta(\sigma+i t)| \ll$ $|t|^{1-\sigma} \log |t|$ for $\sigma \leq 1$ and $|t| \geq 1$.
(i) Show using Perron's formula that for $2 \leq T \leq 2 x$

$$
\sum_{n<x} \frac{\mu(n)^{2} \phi(n)}{n}=\frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \frac{x^{s}}{s} \zeta(s) Z(s) d s+O\left(\frac{x(\log x)^{3}}{T}\right),
$$

where $c=1+1 / \log x$ and for $\Re(s)>1$

$$
Z(s)=\prod_{p}\left(1-\frac{1}{p^{2 s}}-\frac{1}{p^{s+1}}+\frac{1}{p^{2 s+1}}\right) .
$$

(ii) Show that the product of for $Z(s)$ converges absolutely for $\Re(s)>1 / 2$.
(iii) Let $\epsilon=1 / 1000$. By moving the line of integration to $\Re(s)=1 / 2+\epsilon$, show that

$$
\sum_{n<x} \frac{\mu(n)^{2} \phi(n)}{n}=x \prod_{p}\left(1-\frac{2}{p^{2}}+\frac{1}{p^{3}}\right)+O\left(x^{1 / 2+\epsilon} T^{1 / 2-\epsilon} \log x\right)+O\left(\frac{x(\log x)^{3}}{T}\right)
$$

(iv) Deduce that

$$
\sum_{n<x} \frac{\mu(n)^{2} \phi(n)}{n}=x \prod_{p}\left(1-\frac{2}{p^{2}}+\frac{1}{p^{3}}\right)+O\left(x^{2 / 3+\epsilon}\right)
$$

Question 8. Recall from Sheet 3 Q6: If $f: \mathbb{R} \rightarrow \mathbb{C}$ is smooth and non-zero only on some interval $[\alpha, \beta] \subseteq(0, \infty)$ then for any $\sigma \in \mathbb{R}$

$$
f\left(\frac{n}{y}\right)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} F(s) \frac{y^{s}}{n^{s}} d s
$$

where $F(s)=\int_{0}^{\infty} f(x) x^{s-1} d x$ is a smooth function with $|F(\sigma+i t)| \ll 1 /|t|^{100}$.
(i) Show that

$$
\sum_{n=1}^{\infty} \frac{\mu(n)^{2} \phi(n)}{n} f\left(\frac{n}{y}\right)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} y^{s} F(s) \zeta(s) Z(s) d s
$$

where $Z(s)$ is the function appearing in Question 7.
(ii) Fix $\epsilon>0$. Show that

$$
\sum_{n=1}^{\infty} \frac{\mu(n)^{2} \phi(n)}{n} f\left(\frac{n}{y}\right)=y\left(\int_{0}^{\infty} f(x) d x\right) \prod_{p}\left(1-\frac{2}{p^{2}}+\frac{1}{p^{3}}\right)+O\left(y^{1 / 2+\epsilon}\right)
$$

(Compare the answer here to that in Question 7)
Question 9 (Bonus Question). Let $\sigma(n)=\sum_{d \mid n} d$ be the sum of divisors of n. Following the approach of Question 7 or Question 8, obtain an asymptotic formula for $\sum_{n<x} \mu(n)^{2} \sigma(n)$ or $\sum_{n} \mu(n)^{2} \sigma(n) f(n / y)$.

Question 10 (Bonus Question). Let $\Psi(x, y)=\{n \leq x: p \mid n \Rightarrow p \leq y\}$ be the set of integers up to x which only involve prime factors of size at most y.
(i) Let $\alpha \in(0,1)$ be fixed. Show that as $x \rightarrow \infty$

$$
\sum_{x^{\alpha} \leq p \leq x} \frac{1}{p}=\log \frac{1}{\alpha}+o(1)
$$

(ii) Show that for $x^{1 / 2} \leq y \leq x$ we have

$$
\Psi(x, y)=\left(1-\log \left(\frac{\log x}{\log y}\right)+o(1)\right) x .
$$

(iii) Show that for any $x \geq 1$ and $z \geq y>0$

$$
\Psi(x, y)=\Psi(x, z)-\sum_{p<y \leq z} \Psi\left(\frac{x}{p}, p\right)
$$

(iv) Deduce that for $x^{1 / 3} \leq y \leq x^{1 / 2}$

$$
\Psi(x, y)=\left(1-\log 2-\int_{2}^{\log x / \log y} \frac{1}{v}(1-\log (v-1)) d v+o(1)\right) x
$$

(v) Define a function $\rho:[0, \infty) \rightarrow \mathbb{R}$ by $\rho(u)=1$ if $u \leq 1$ and for $u>1$

$$
\rho(u)=1-\int_{1}^{u} \rho(t-1) \frac{d t}{t} .
$$

Show that parts (ii) and (iv) imply that for $u \leq 3$

$$
\Psi\left(x, x^{1 / u}\right)=(\rho(u)+o(1)) x .
$$

(vi) Show by induction that if

$$
\Psi\left(x, x^{1 / u}\right)=(\rho(u)+o(1)) x
$$

for $u \leq m$, then the same equation holds for $u \leq m+1$. Deduce that for any fixed $u>0$ we have

$$
\Psi\left(x, x^{1 / u}\right)=(\rho(u)+o(1)) x
$$

james.maynard@maths.ox.ac.uk

