Question 1. Prove that $\pi(X) \leq 2\pi(X/2)$ for X sufficiently large.

Question 2. Let p_n denote the n^{th} prime. Prove that

$$p_n = n \log n + n \log \log n + O(n).$$

Question 3. (i) Let $\theta \in (0,1)$ be such that $\Re(\rho) \leq \theta$ for all non-trivial zeros ρ . Deduce that for all $x \geq 2$

$$\sum_{n \le x} \Lambda(n) = x + O(x^{\theta} (\log x)^2).$$

(ii) Let $\gamma \in (0,1)$ be such that for all $x \geq 2$

$$\sum_{n < x} \Lambda(n) = x + O(x^{\gamma}).$$

Show that $\Re(\rho) \leq \gamma$ for all zeros of $\zeta(s)$.

(Hint: Use partial summation to prove analytic continuation of ζ'/ζ)

(iii) Let $\alpha \in (0,1)$ be fixed. Show that if for all $x \geq 2$ we have

$$\sum_{n < x} \Lambda(n) = x + O\left(x^{\alpha} \exp(\sqrt{\log x})\right)$$

then in fact

$$\sum_{n < x} \Lambda(n) = x + O(x^{\alpha} (\log x)^2).$$

Question 4. (i) Show that for $\Re(s) > 1$ we have

$$\log \zeta(s) = \sum_{p} \sum_{m=1}^{\infty} \frac{1}{mp^{ms}}.$$

- (ii) Show that $3 + 4\cos(\theta) + \cos(2\theta) \ge 0$.
- (iii) Using (i) and (ii), show that for $\sigma > 1$

$$3\log\zeta(\sigma) + 4\Re\log\zeta(\sigma + it) + \Re\log(\zeta(\sigma + 2it) \ge 0.$$

Deduce from this that for $\sigma > 1$

$$\zeta(\sigma)^3 |\zeta(\sigma+it)|^4 |\zeta(\sigma+2it)| \ge 1.$$

(iv) Deduce from the above inequality that $\zeta(1+it) \neq 0$. (Hint: Consider $\sigma \to 1$) Question 5. It is a fact that

$$\sum_{n < x} \Lambda(n) = x - \sum_{\rho} \frac{x^{\rho}}{\rho} - \frac{\zeta'(0)}{\zeta(0)} - \frac{1}{2} \log(1 - x^{-2}).$$

where the sum is understood to be the limit as $T \to \infty$ of $\sum_{|\Im(\rho)| \le T} x^{\rho}/\rho$ over non-trivial zeros ρ (it is not absolutely convergent).

- (i) Using this fact, show that $\zeta(s)$ must have at least one non-trivial zero.
- (ii) Show that if ρ is a non-trivial zero of $\zeta(s)$, then so is $1-\rho$.
- (iii) Let $\epsilon > 0$. Using Question 3, deduce that we cannot have for all $x \geq 2$ that

$$\sum_{n < x} \Lambda(n) = x + O(x^{1/2 - \epsilon}).$$

Question 6. Recall from Sheet 3 Q6: If $f: \mathbb{R} \to \mathbb{C}$ is smooth and non-zero only on some interval $[\alpha, \beta] \subseteq (0, \infty)$ then for any $\sigma \in \mathbb{R}$

$$f\left(\frac{n}{y}\right) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} F(s) \frac{y^s}{n^s} ds,$$

where $F(s) = \int_0^\infty f(x) x^{s-1} dx$ is a smooth function with $|F(\sigma+it)| \ll 1/|t|^{100}$ and with no zeros or poles.

(i) Show that

$$\sum_{n=1}^{\infty} \Lambda(n) f\left(\frac{n}{y}\right) = \frac{-1}{2\pi i} \int_{2-i\infty}^{2+i\infty} y^s F(s) \frac{\zeta'(s)}{\zeta(s)} ds.$$

(ii) Deduce that

$$\sum_{n=1}^{\infty} \Lambda(n) f\left(\frac{n}{y}\right) = y \int_0^{\infty} f(t) dt - \sum_{\rho} y^{\rho} F(\rho) + O(y^{-1/4})$$

where \sum_{ρ} is a sum over all non-trivial zeros of $\zeta(s)$ with multiplicity.

Question 7. For this question you may use the following fact: $|\zeta(\sigma + it)| \ll |t|^{1-\sigma} \log |t|$ for $\sigma \leq 1$ and $|t| \geq 1$.

(i) Show using Perron's formula that for $2 \le T \le 2x$

$$\sum_{n < x} \frac{\mu(n)^2 \phi(n)}{n} = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \frac{x^s}{s} \zeta(s) Z(s) ds + O\left(\frac{x(\log x)^3}{T}\right),$$

where $c = 1 + 1/\log x$ and for $\Re(s) > 1$

$$Z(s) = \prod_{p} \left(1 - \frac{1}{p^{2s}} - \frac{1}{p^{s+1}} + \frac{1}{p^{2s+1}} \right).$$

- (ii) Show that the product of for Z(s) converges absolutely for $\Re(s) > 1/2$.
- (iii) Let $\epsilon = 1/1000$. By moving the line of integration to $\Re(s) = 1/2 + \epsilon$, show that

$$\sum_{n \le x} \frac{\mu(n)^2 \phi(n)}{n} = x \prod_{p} \left(1 - \frac{2}{p^2} + \frac{1}{p^3} \right) + O\left(x^{1/2 + \epsilon} T^{1/2 - \epsilon} \log x \right) + O\left(\frac{x (\log x)^3}{T} \right)$$

(iv) Deduce that

$$\sum_{n < x} \frac{\mu(n)^2 \phi(n)}{n} = x \prod_{p} \left(1 - \frac{2}{p^2} + \frac{1}{p^3} \right) + O\left(x^{2/3 + \epsilon}\right).$$

Question 8. Recall from Sheet 3 Q6: If $f: \mathbb{R} \to \mathbb{C}$ is smooth and non-zero only on some interval $[\alpha, \beta] \subseteq (0, \infty)$ then for any $\sigma \in \mathbb{R}$

$$f\left(\frac{n}{y}\right) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} F(s) \frac{y^s}{n^s} ds,$$

where $F(s) = \int_0^\infty f(x) x^{s-1} dx$ is a smooth function with $|F(\sigma + it)| \ll 1/|t|^{100}$.

(i) Show that

$$\sum_{n=1}^{\infty} \frac{\mu(n)^2 \phi(n)}{n} f\left(\frac{n}{y}\right) = \frac{1}{2\pi i} \int_{2-i\infty}^{2+i\infty} y^s F(s) \zeta(s) Z(s) ds$$

where Z(s) is the function appearing in Question 7.

(ii) Fix $\epsilon > 0$. Show that

$$\sum_{n=1}^{\infty} \frac{\mu(n)^2 \phi(n)}{n} f\left(\frac{n}{y}\right) = y \left(\int_0^{\infty} f(x) dx\right) \prod_p \left(1 - \frac{2}{p^2} + \frac{1}{p^3}\right) + O(y^{1/2 + \epsilon})$$

(Compare the answer here to that in Question 7)

Question 9 (Bonus Question). Let $\sigma(n) = \sum_{d|n} d$ be the sum of divisors of n. Following the approach of Question 7 or Question 8, obtain an asymptotic formula for $\sum_{n < x} \mu(n)^2 \sigma(n)$ or $\sum_n \mu(n)^2 \sigma(n) f(n/y)$.

Question 10 (Bonus Question). Let $\Psi(x,y) = \{n \leq x : p | n \Rightarrow p \leq y\}$ be the set of integers up to x which only involve prime factors of size at most y.

(i) Let $\alpha \in (0,1)$ be fixed. Show that as $x \to \infty$

$$\sum_{x^{\alpha}$$

(ii) Show that for $x^{1/2} \le y \le x$ we have

$$\Psi(x,y) = \left(1 - \log\left(\frac{\log x}{\log y}\right) + o(1)\right)x.$$

(iii) Show that for any $x \ge 1$ and $z \ge y > 0$

$$\Psi(x,y) = \Psi(x,z) - \sum_{p < y \le z} \Psi\Big(\frac{x}{p},p\Big).$$

(iv) Deduce that for $x^{1/3} \le y \le x^{1/2}$

$$\Psi(x,y) = \left(1 - \log 2 - \int_{2}^{\log x/\log y} \frac{1}{v} \left(1 - \log(v-1)\right) dv + o(1)\right) x$$

(v) Define a function $\rho:[0,\infty)\to\mathbb{R}$ by $\rho(u)=1$ if $u\le 1$ and for u>1

$$\rho(u) = 1 - \int_1^u \rho(t-1) \frac{dt}{t}.$$

Show that parts (ii) and (iv) imply that for $u \leq 3$

$$\Psi(x, x^{1/u}) = (\rho(u) + o(1))x.$$

(vi) Show by induction that if

$$\Psi(x, x^{1/u}) = (\rho(u) + o(1))x$$

for $u \le m$, then the same equation holds for $u \le m+1$. Deduce that for any fixed u>0 we have

$$\Psi(x, x^{1/u}) = (\rho(u) + o(1))x.$$

 ${\tt james.maynard@maths.ox.ac.uk}$