C3.4 ALGEBRAIC GEOMETRY - WEEK 0 SHEET (NOT TO HAND IN)

Comments and corrections are welcome: ritter@maths.ox.ac.uk

Exercise 1. Varieties: solution sets of polynomials.

Let V_{0}, V_{1}, V_{2} be the solution sets respectively of the three equations

$$
y^{2}=x^{3} \quad y^{2}=x^{3}+x \quad y^{2}=x^{3}+x^{2} .
$$

Draw in \mathbb{R}^{2} the solutions, and check that V_{0} has a cusp at $0, V_{1}$ has a vertical tangent at 0 , and V_{2} self-intersects itself at 0 . Now work in \mathbb{C}^{2}, what complex solutions are missing? ${ }^{1}$

Exercise 2. Blow-ups.

The blow-up of V_{2} at $(0,0)$ is defined as the solution set ${ }^{2}$

$$
\widetilde{V_{2}}=\left\{\left((x, y),\left[z_{0}, z_{1}\right]\right) \in \mathbb{C}^{2} \times \mathbb{C P}^{1}: y^{2}-x^{3}-x^{2}=0, x z_{1}=y z_{0}\right\}
$$

Intuitively, the $\mathbb{C P}{ }^{1}$ keeps track of the slope $y / x=z_{1} / z_{0}$. Show that projection $\widetilde{V_{2}} \rightarrow V_{2} \subset \mathbb{C}^{2}$ to the first factor is a bijection except over $(0,0)$. Does the curve $\widetilde{V_{2}}$ self-intersect?

Exercise 3. \mathbb{C}-algebras.

Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be the ring of polynomials over \mathbb{C} in n variables. Show that a homomorphism $\varphi: R \rightarrow S$ of \mathbb{C}-algebras ${ }^{3}$ is completely determined by the choice of n elements in S, namely the images under φ of x_{1}, \ldots, x_{n}. Show that S is a finitely generated ${ }^{4} \mathbb{C}$-algebra if and only if there is a surjective such $\varphi: R \rightarrow S$, for some n. Construct an isomorphism

$$
S \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I \quad \text { for some ideal } I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]
$$

Is this isomorphism unique? (if not, construct a counterexample).

Exercise 4. The functions on a variety.

Consider one of the curves V from Exercise 1, defined by the relevant equation $f=0$.
Let $\operatorname{Hom}(V, \mathbb{C})$ be the set of all complex functions $V \rightarrow \mathbb{C}$ which can be expressed as polynomials over \mathbb{C} in x, y. Check that $\operatorname{Hom}(V, \mathbb{C})$ is a \mathbb{C}-algebra.

Consider the \mathbb{C}-algebra $\mathbb{C}[V]$, called coordinate ring of V, defined by quotienting $\mathbb{C}[x, y]$ by the ideal generated by f,

$$
\mathbb{C}[V]=\mathbb{C}[x, y] /(f)
$$

Explain why this \mathbb{C}-algebra is isomorphic to $\operatorname{Hom}(V, \mathbb{C})$.
The fraction field $\mathbb{C}(V)=\operatorname{Frac} \mathbb{C}[V]$ is a field extension of \mathbb{C}, and the dimension of V is the transcendence degree of this extension. ${ }^{5}$ Show that our curves V have dimension 1.

Exercise 5. Tangent spaces.

Let V be one of the curves in Exercise 1 defined by the relevant polynomial f. Let $p \in V$. Consider a (complex) line $\ell(t)=p+t v$ through p, parametrized by $t \in \mathbb{C}$, with velocity $v \in \mathbb{C}^{2}$. The line ℓ is tangent to V at p if the polynomial $f(\ell(t))$ in t has a zero of order at least two at $t=0$. What are the lines tangent to V_{0}, V_{1}, V_{2} ?

The tangent space $T_{p} V$ at $p \in V$ is the union of all lines tangent to V at p. Convince yourself that $T_{p} V$ is a vector space. Say that p is a singular point if the vector space dimension $\operatorname{dim}_{k} T_{p} V$ of $T_{p} V$ does not equal $\operatorname{dim} V$ (in our case, $\operatorname{dim} V=1$). Find the singular points of V_{0}, V_{1}, V_{2}.

Show that by doing a blow-up of V_{0} you obtain a curve without singularities.

[^0]
[^0]: Date: This version of the notes was created on November 5, 2018.
 ${ }^{1}$ Hint. how many solutions do you expect if you intersect the curve with $x=c$, some constant?
 ${ }^{2}$ Recall that the complex projective line is $\mathbb{C P}{ }^{1}=\left(\mathbb{C}^{2} \backslash(0,0)\right) / \sim$ where we identify $\left(z_{0}, z_{1}\right) \sim\left(\lambda z_{0}, \lambda z_{1}\right)$ for any $\lambda \in \mathbb{C} \backslash 0$, and we typically denote the equivalence class by $\left[z_{0}: z_{1}\right]$. Notice this space is covered by two open sets: $z_{0} \neq 0$ and $z_{1} \neq 0$. If $z_{0} \neq 0$, we can rescale so that $\left[z_{0}: z_{1}\right]=[1: z]$, so that open set is just a copy of \mathbb{C} parametrized by the variable $z=z_{1} / z_{0}$. Similarly $z_{1} \neq 0$ is a copy of \mathbb{C} parametrized by $w=z_{0} / z_{1}$. The overlap of the two open sets is a copy of $\mathbb{C} \backslash 0$, and there the two parameters are related by $z=1 / w$.
 ${ }^{3} \mathrm{~A} \mathbb{C}$-algebra is a ring which is also a vector space over \mathbb{C}, satisfying the obvious axioms. A homomorphism of \mathbb{C}-algebras is a ring hom (in particular 1 maps to 1) which is also a linear hom of vector spaces over \mathbb{C}.
 ${ }^{4} \mathrm{~A} \mathbb{C}$-algebra is finitely generated by a_{1}, \ldots, a_{n} if every element is a polynomial over \mathbb{C} in the a_{1}, \ldots, a_{n}.
 $\mathbb{C} \hookrightarrow K$, if $y_{1}, \ldots, y_{m} \in K$ are algebraically independent over \mathbb{C}, and $\mathbb{C}\left(y_{1}, \ldots, y_{m}\right)=\operatorname{Frac} \mathbb{C}\left[y_{1}, \ldots, y_{m}\right] \subset K$ is an algebraic extension, then m is the transcendence degree $\operatorname{trdeg}_{\mathbb{C}} K$.

