C3.4 ALGEBRAIC GEOMETRY - WEEK 0 SHEET (NOT TO HAND IN) Comments and corrections are welcome: ritter@maths.ox.ac.uk

Exercise 1. Varieties: solution sets of polynomials.

Let V_0, V_1, V_2 be the solution sets respectively of the three equations

$$y^2 = x^3$$
 $y^2 = x^3 + x$ $y^2 = x^3 + x^2$.

Draw in \mathbb{R}^2 the solutions, and check that V_0 has a cusp at 0, V_1 has a vertical tangent at 0, and V_2 self-intersects itself at 0. Now work in \mathbb{C}^2 , what complex solutions are missing?¹

Exercise 2. Blow-ups.

The blow-up of V_2 at (0,0) is defined as the solution set²

$$\widetilde{V_2} = \{((x,y), [z_0, z_1]) \in \mathbb{C}^2 \times \mathbb{CP}^1 : y^2 - x^3 - x^2 = 0, xz_1 = yz_0\}.$$

Intuitively, the \mathbb{CP}^1 keeps track of the slope $y/x = z_1/z_0$. Show that projection $\widetilde{V_2} \to V_2 \subset \mathbb{C}^2$ to the first factor is a bijection except over (0,0). Does the curve $\widetilde{V_2}$ self-intersect?

Exercise 3. C-algebras.

Let $R = \mathbb{C}[x_1, \ldots, x_n]$ be the ring of polynomials over \mathbb{C} in *n* variables. Show that a homomorphism $\varphi : R \to S$ of \mathbb{C} -algebras³ is completely determined by the choice of *n* elements in *S*, namely the images under φ of x_1, \ldots, x_n . Show that *S* is a finitely generated⁴ \mathbb{C} -algebra if and only if there is a surjective such $\varphi : R \to S$, for some *n*. Construct an isomorphism

 $S \cong \mathbb{C}[x_1, \dots, x_n]/I$ for some ideal $I \subset \mathbb{C}[x_1, \dots, x_n]$.

Is this isomorphism unique? (if not, construct a counterexample).

Exercise 4. The functions on a variety.

Consider one of the curves V from Exercise 1, defined by the relevant equation f = 0.

Let $\operatorname{Hom}(V, \mathbb{C})$ be the set of all complex functions $V \to \mathbb{C}$ which can be expressed as polynomials over \mathbb{C} in x, y. Check that $\operatorname{Hom}(V, \mathbb{C})$ is a \mathbb{C} -algebra.

Consider the \mathbb{C} -algebra $\mathbb{C}[V]$, called *coordinate ring of* V, defined by quotienting $\mathbb{C}[x, y]$ by the ideal generated by f,

$$\mathbb{C}[V] = \mathbb{C}[x, y]/(f).$$

Explain why this \mathbb{C} -algebra is isomorphic to $\operatorname{Hom}(V, \mathbb{C})$.

The fraction field $\mathbb{C}(V) = \operatorname{Frac} \mathbb{C}[V]$ is a field extension of \mathbb{C} , and the *dimension* of V is the *transcendence degree* of this extension.⁵ Show that our curves V have dimension 1.

Exercise 5. Tangent spaces.

Let V be one of the curves in Exercise 1 defined by the relevant polynomial f. Let $p \in V$. Consider a (complex) line $\ell(t) = p + tv$ through p, parametrized by $t \in \mathbb{C}$, with velocity $v \in \mathbb{C}^2$. The line ℓ is *tangent* to V at p if the polynomial $f(\ell(t))$ in t has a zero of order at least two at t = 0. What are the lines tangent to V_0, V_1, V_2 ?

The tangent space T_pV at $p \in V$ is the union of all lines tangent to V at p. Convince yourself that T_pV is a vector space. Say that p is a singular point if the vector space dimension $\dim_k T_pV$ of T_pV does not equal $\dim V$ (in our case, $\dim V = 1$). Find the singular points of V_0, V_1, V_2 .

Show that by doing a blow-up of V_0 you obtain a curve without singularities.

Date: This version of the notes was created on November 5, 2018.

¹*Hint.* how many solutions do you expect if you intersect the curve with x = c, some constant?

²Recall that the *complex projective line* is $\mathbb{CP}^1 = (\mathbb{C}^2 \setminus (0, 0)) / \sim$ where we identify $(z_0, z_1) \sim (\lambda z_0, \lambda z_1)$ for any $\lambda \in \mathbb{C} \setminus 0$, and we typically denote the equivalence class by $[z_0 : z_1]$. Notice this space is covered by two open sets: $z_0 \neq 0$ and $z_1 \neq 0$. If $z_0 \neq 0$, we can rescale so that $[z_0 : z_1] = [1 : z]$, so that open set is just a copy of \mathbb{C} parametrized by the variable $z = z_1/z_0$. Similarly $z_1 \neq 0$ is a copy of \mathbb{C} parametrized by $w = z_0/z_1$. The overlap of the two open sets is a copy of $\mathbb{C} \setminus 0$, and there the two parameters are related by z = 1/w.

³A \mathbb{C} -algebra is a ring which is also a vector space over \mathbb{C} , satisfying the obvious axioms. A homomorphism of \mathbb{C} -algebras is a ring hom (in particular 1 maps to 1) which is also a linear hom of vector spaces over \mathbb{C} .

⁴A \mathbb{C} -algebra is *finitely generated* by a_1, \ldots, a_n if every element is a polynomial over \mathbb{C} in the a_1, \ldots, a_n .

⁵i.e. the maximal number of algebraically independent variables of $\mathbb{C}(V)$ over \mathbb{C} . Fact: for an extension $\mathbb{C} \hookrightarrow K$, if $y_1, \ldots, y_m \in K$ are algebraically independent over \mathbb{C} , and $\mathbb{C}(y_1, \ldots, y_m) = \operatorname{Frac} \mathbb{C}[y_1, \ldots, y_m] \subset K$ is an algebraic extension, then m is the transcendence degree $\operatorname{trdeg}_{\mathbb{C}} K$.