C3.4 ALGEBRAIC GEOMETRY - EXERCISE SHEET 3 Comments and corrections are welcome: ritter@maths.ox.ac.uk

(1) Group actions

- (a) Let $G = \mathbb{Z}/3\mathbb{Z} = \{1, w, w^2\}$, where w is a cube root of unity. Let G act on \mathbb{A}^2 via w(x, y) = (wx, wy). Can you recognise the categorical quotient of \mathbb{A}^2 by G? What do you get more generally for the analogous action of $\mathbb{Z}/d\mathbb{Z}$ on \mathbb{A}^{n+1} ?
- (b) Let $G = k^*$ act on \mathbb{A}^2 via t(x, y) = (tx, y) for all $t \in k^*$. Find the categorical quotient Y of \mathbb{A}^2 by G, giving the map $\mathbb{A}^2 \to Y$ explicitly.

(2) Dimension, Degree and Hilbert Polynomials.

- (a) For any variety¹ X, show that dim $\mathcal{O}_{X,p} = \dim_p X$.
- (b) Show that, if X is a reducible projective variety with equidimensional irreducible components X_i then deg $X = \sum_i \deg X_i$.
- (c) Find the Hilbert polynomial of $\nu_d(\mathbb{P}^n)$ (as a binomial coefficient), and verify that this projective variety has dimension n and degree d^n .
- (d) Compute the degree² deg $\nu_d(\mathbb{P}^1)$ in two ways: either directly, or by using the Hilbert polynomial.
- (e) Let F be a homogeneous irreducible polynomial of degree d in $k[x_0, \ldots, x_n]$, and let $X := \mathbb{V}(F) \subset \mathbb{P}^n$. Find the Hilbert polynomial of X and deduce that, as expected, dim X = n 1 and deg X = d.

(3) Affine quasi-projective varieties, and Dimension.

- (a) Find an open affine cover of $\mathbb{A}^2 \setminus \{(0,0)\}$.
- (b) Show that GL(n,k) is an affine variety.³
- (c) Let X be an affine variety and $f \in k[X]$. Show that f vanishes nowhere on X if and only if f is invertible in k[X].

(4) Localization. Let R be a ring.⁴

(a) Let S be a multiplicative subset of R. Show that the localization $S^{-1}R$ is naturally isomorphic, as an R-algebra, to⁵

$$R[x_s:s\in S]/\langle sx_s-1:s\in S\rangle.$$

(b) Consider the elliptic curve $X \subset \mathbb{A}^2$ defined by $y^2 = x(x-1)(x-2)$. Find the localisation⁶ of the coordinate ring k[X] at the point $p = (1,0) \in X$. Show that

Date: This version of the notes was created on November 20, 2017.

These exercise sheets were inherited from Gergely Bérczi.

¹If you like, you may assume (since we can pass to a local affine patch) that X is an affine variety and you may use the theorem that $\mathcal{O}_{X,p} = k[X]_{\mathfrak{m}_p}$ where \mathfrak{m}_p is the maximal ideal corresponding to the point $p \in X$. ²Recall $\nu_d(\mathbb{P}^1)$ is the rational normal curve of degree d.

 $^{^{3}}$ in the sense that it is isomorphic (as a quasi-proj. variety) to a Zariski closed subset of an affine space. 4 as usual, commutative with unit.

⁵intuitively we are formally inverting each element of S because we introduce a new abstract variable x_s for each $s \in S$, and we impose the relations $sx_s = 1$. Hint. To prove you get an isomorphism, it is easiest to try to guess the definition of the inverse map, and show that the two composites give identity maps.

⁶*Hint/Definition.* You need to study $k[X]_{\mathfrak{m}_p}$, so localize at $S = k[X] \setminus \mathfrak{m}_p$.

the (unique) maximal ideal of this local ring is generated by y. What does this mean geometrically?⁷

- (c) Suppose $r \in R$ is zero in each local ring: $\frac{r}{1} = 0 \in R_{\mathfrak{m}}$ for every maximal ideal $\mathfrak{m} \subset R$. Deduce⁸ that $r = 0 \in R$.
- (d) Deduce from (c) that for any affine variety X, if two functions $f, g: X \to k$ have equal local germs⁹ at each point of X, then they are globally equal: f = g.
- (5) Structure sheaf: computing $\mathcal{O}_{X,p}$ and $\mathcal{O}_X(U)$.

2

(a) Let $X = \mathbb{V}(xy) \subset \mathbb{A}^2$ be the union of the two axes. Show algebraically that $\mathcal{O}_{X,(0,1)} \cong k[y]_{(y-1)}$, and then explain geometrically why you are not surprised that this is the local ring of \mathbb{A}^1 at 1. Let \mathfrak{m}_p be the maximal ideal of $\mathcal{O}_{X,p}$. Compare, as you vary $p \in X$, the dimensions of the k-vector spaces¹⁰

$$\mathfrak{m}_p/\mathfrak{m}_p^2.$$

Deduce that the k-algebra $\mathcal{O}_{X,(0,0)}$ cannot be generated by one function.

(b) Find $\mathcal{O}_X(U)$, where $X = \mathbb{P}^2$ and

$$U = X \setminus \mathbb{V}(x_0^2 + x_1^2 + x_2^2).$$

Hint. First compute $\mathcal{O}_X(U \cap U_i)$ for the usual cover of \mathbb{P}^n by affine charts U_i . Then consider the restriction of functions to overlaps $U \cap U_i \cap U_j$.

Cultural Remark. $\mathfrak{m}_p/\mathfrak{m}_p^2$ is the *cotangent space* to X at p (its dual vector space is called *tangent space*). When the dimension of this vector space is not equal to the dimension of X, then p is called a *singularity*. Non-singular points are called *regular*. In algebra, for a Noetherian local ring A with maximal ideal \mathfrak{m} , one says that A is regular if dim A equals the vector space dimension $\dim_k \mathfrak{m}/\mathfrak{m}^2$ (in which case, that number equals the minimal number of generators needed to generate the ideal \mathfrak{m}).

⁷i.e. interpret this result in terms of germs of functions at p defined on the curve.

⁸*Hint.* Recall that the annihilator $\operatorname{Ann} r = \{a \in R : ar = 0\}$ is an ideal in R.

⁹i.e. f = g inside $\mathcal{O}_{X,p}$. ¹⁰For an ideal I, by I^2 one means the ideal generated by all $i \cdot j$, for $i, j \in I$.