C3.4 ALGEBRAIC GEOMETRY - EXERCISE SHEET 4

Comments and corrections are welcome: ritter@maths.ox.ac.uk
(1) Tangent Spaces.
(a) Show that if $\operatorname{char}(k)$ does not divide d then the hypersurface $\mathbb{V}\left(x_{0}^{d}+\ldots+x_{n}^{d}\right) \subset \mathbb{P}^{n}$ is nonsingular.
(b) By computing the dimension of tangent spaces at various points show that the varieties $\mathbb{V}(x y(x-y)) \subset \mathbb{A}^{2}$ and $\mathbb{V}(x y, y z, z x) \subset \mathbb{A}^{3}$ are not isomorphic.
(2) From infinitesimal to global. Let X and Y be irreducible affine varieties. Suppose $F: X \rightarrow Y$ is a morphism of affine varieties which is a homeomorphism in the Zariski topology and assume ${ }^{1}$ it induces isomorphisms $F_{x}^{*}: \mathcal{O}_{Y, F(x)} \rightarrow \mathcal{O}_{X, x}$ for every $x \in X$.
(a) Show that $F^{*}: k[Y] \rightarrow k[X]$ is injective.
(b) Suppose $g \in k[X]$. Show that, for all $x \in X$, there exists an open neighbourhood V_{x} of $F(x)$ and a regular function $\left(V_{x}, h_{x}\right) \in \mathcal{O}_{Y, F(x)}$ such that $F^{*}\left(V_{x}, h_{x}\right)=$ $\left(F^{-1}\left(V_{x}\right),\left.g\right|_{F^{-1}\left(V_{x}\right)}\right)$. Show that $h_{x}=h_{x^{\prime}}$ in $V_{x} \cap V_{x^{\prime}}$ and conclude that there exists $h \in k[Y]$ such that $F^{*} h=g$.
(c) Now let W and Z be irreducible quasi-projective varieties, and suppose that G : $W \rightarrow Z$ is a morphism of quasi-projective varieties which is a homeomorphism in the Zariski topology, such that for every $w \in W$ the ring homomorphism $G_{w}^{*}: \mathcal{O}_{Z, G(w)} \rightarrow \mathcal{O}_{W, w}$ is an isomorphism. Show that G is an isomorphism.
(3) Function field. Let X be an irreducible affine variety. Show that:
(a) $\mathcal{O}_{X}(U)$ and $\mathcal{O}_{X, p}$ are subrings of $k(X)$. Hint. You need to explain first how to include $\mathcal{O}_{X}(U) \subset k(X)$ and $\mathcal{O}_{X, p} \subset k(X)$.
(b) Restriction maps are inclusions: if $U \subset V$ then $\mathcal{O}_{X}(V) \subset \mathcal{O}_{X}(U) \subset k(X)$.
(c) $\mathcal{O}_{X}(U \cup V)=\mathcal{O}_{X}(U) \cap \mathcal{O}_{X}(V) \subset k(X)$.
(d) $\mathcal{O}_{X}(U)=\bigcap \mathcal{O}_{X, p} \subset k(X)$, taking the intersection over all $p \in U$.
(e) $\mathcal{O}_{X}(U)=\bigcap \mathcal{O}_{X}\left(D_{h}\right)$, taking the intersection over all $D_{h} \subset U$.
(4) Rational and birational maps.
(a) Let $F: X \rightarrow Y$ be a rational map of quasi-projective varieties, with X irreducible. If (U, f) is a representation for F, with U affine, show that $\{(u, f(u))$: $u \in U\} \subset U \times Y$ is a closed subvariety. Conclude that the projection from the graph $^{2} \Gamma_{F} \rightarrow X$ is a birational equivalence.
(b) Define $F: \mathbb{A}^{2} \rightarrow \mathbb{A}^{1}$ by $F(x, y)=\frac{y}{x}$. Find the equation defining $\Gamma_{F} \subset \mathbb{A}^{3}$.
(c) Show that the curve $\mathbb{V}\left(y^{2}-x^{2}-x^{3}\right) \subset \mathbb{A}^{2}$ is rational. ${ }^{3}$
(5) Resolution of singularities. Desingularise ${ }^{4} \mathbb{V}\left(y^{2}-x^{4}-x^{5}\right) \subset \mathbb{A}^{2}$. Draw a picture of the series of blow-ups.

[^0]
[^0]: Date: This version of the notes was created on February 27, 2018.
 These exercise sheets were inherited from Gergely Bérczi.
 ${ }^{1}$ The second assumption is not automatic. Indeed recall the standard example from lectures: $\mathbb{A}^{1} \rightarrow$ $\mathbb{V}\left(y^{2}-x^{3}\right)=\left\{\left(t^{2}, t^{3}\right): t \in k\right\}, t \mapsto\left(t^{2}, t^{3}\right)$ is a homeomorphism, but it cannot induce isomorphisms on stalks, otherwise by this exercise the two varieties would have isomorphic coordinate rings which we know is false.
 ${ }^{2}$ Recall that the graph Γ_{F} is defined to be the closure of $\{(u, f(u)): u \in U\}$.
 ${ }^{3}$ Rational means birationally equivalent to \mathbb{P}^{1}. Hint. Try blowing up the curve at 0 , and consider the map that projects to the exeptional divisor.
 ${ }^{4}$ Recipe: find the singularities, blow them up, analyse the result and if necessary blow up again.

