MODEL SOLUTIONS FOR PROBLEM SHEET 4

ALEXANDER RITTER

(1) (a) Show that if char(k) does not divide d then the hypersurface $\mathbb{V}(x_0^d + \ldots + x_n^d) \subset \mathbb{P}^n$ is nonsingular.

Solution. Direct computation starting from the definition. Additional details: $d_p F = \sum dp_j^{d-1} \cdot (x_j - p_j)$, for this to vanish we would need $p_j = 0$ for all j (since $d \neq 0 \in k$, but $p = 0$ is not allowed in \mathbb{P}^n .

(b) By computing the dimension of tangent spaces at various points show that the varieties $\mathbb{V}(xy(x-y)) \subset \mathbb{A}^2$ and $\mathbb{V}(xy,yz,zx) \subset \mathbb{A}^3$ are not isomorphic.

Solution. Geometrically the first case consists of three lines meeting at 0 in \mathbb{A}^2 , the second case consists of three lines meeting at 0 in \mathbb{A}^3 . Away from the point where the lines meet, we get the same tangent space as that for \mathbb{A}^1 , so dim = 1. But at the point where they meet, the span of the tangent lines gives \mathbb{A}^2 in the first case, but \mathbb{A}^3 in the second case. Finally, to conclude, recall that the tangent space is intrinsic, independent of the embedding into affine space (in particular it is an isomorphism invariant).

Alternatively, a more computational approach: for $p = (p_1, p_2) \in \mathbb{A}^2$

$$
T_p \mathbb{V}(xy(x - y)) = \mathbb{V}((2p_1p_2 - p_2^2)(x - p_1) + (p_1^2 - 2p_1p_2)(y - p_2))
$$

and for $p = (p_1, p_2, p_3) \in \mathbb{A}^3$, the definition of $T_p \mathbb{V}(xy, yz, zx)$ is:

$$
\mathbb{V}(p_2(x - p_1) + p_1(y - p_2), p_3(y - p_2) + p_2(z - p_3), p_3(x - p_1) + p_1(z - p_3)).
$$

So dim $T_{(0,0,0)} \mathbb{V}(xy, yz, zx) = 3$. If $F : \mathbb{V}(xy, yz, zx) \to \mathbb{V}(xy(x - y))$ was an
isomorphism, this would induce an isomorphism

$$
T_{(0,0,0)} \mathbb{V}(xy, yz, zx) \to T_{F(0,0,0)} \mathbb{V}(xy(x - y)),
$$

but the latter has dimension ≤ 2 .

- (2) Let X and Y be irreducible affine varieties. Suppose $F : X \rightarrow Y$ is a morphism of affine varieties which is a homeomorphism in the Zariski topology and assume¹ it induces isomorphisms $F_x^* : \mathcal{O}_{Y,F(x)} \to \mathcal{O}_{X,x}$ for every $x \in X$.
	- (a) Show that $F^*: k[Y] \to k[X]$ is injective.
	- (b) Suppose $g \in k[X]$. Show that, for all $x \in X$, there exists an open neighbourhood V_x of $F(x)$ and a regular function $(V_x, h_x) \in \mathcal{O}_{Y,F(x)}$ such that $F^*(V_x, h_x) =$ $(F^{-1}(V_x), g|_{F^{-1}(V_x)})$. Show that $h_x = h_{x'}$ in $V_x \cap V_{x'}$ and conclude that there exists $h \in k[Y]$ such that $F^*h = g$.
	- (c) Now let W and Z be irreducible quasi-projective varieties, and suppose that G : $W \to Z$ is a morphism of quasi-projective varieties which is a homeomorphism in the Zariski topology, such that for every $w \in W$ the ring homomorphism $G_w^*: \mathcal{O}_{Z, G(w)} \to \mathcal{O}_{W, w}$ is an isomorphism. Show that G is an isomorphism.

¹The second assumption is not automatic. Indeed recall the standard example from lectures: $\mathbb{A}^1 \to$ $\mathbb{V}(y^2 - x^3) = \{(t^2, t^3) : t \in k\}, t \mapsto (t^2, t^3)$ is a homeomorphism, but it cannot induce isomorphisms on stalks, otherwise by this exercise the two varieties would have isomorphic coordinate rings which we know is false.

Solution. Cultural Remark: a high-tech viewpoint of this exercise is that we have sheaves on W, Z whose stalks are isomorphic, so the sheaves are isomorphic, and as it is also a homeomorphism on spaces we have an isomorphism of ringed spaces. (a) F^* is injective since F is dominant (indeed F is surjective), using Ex.Sheet.1.

Alternatively: F is a morphism of affine varieties, so F^* is the composition

$$
k[Y] \hookrightarrow \mathcal{O}_{Y,F(x)} \to \mathcal{O}_{X,x} \supset k[X].
$$

The image sits in k[X] since the image of $f \in k[Y]$ is the composition of f with a polynomial map F . The composition is injective as it is a composition of injective maps.

(b) The first part follows from the fact that $g \in k[X] \subset \mathcal{O}_{X,x}$ and F_x^* is surjective. Since $F^*\hat{h}_x = g|_{F^{-1}(V_x)}, F^*h_{x'} = g|_{F^{-1}(V_{x'})}$, we have the equality $F^*h_x = F^*h_{x'}$ on $F^{-1}(V_x \cap V_{x'})$. But F^* is injective, so $h_x = h_{x'}$ on $V_x \cap V_{x'}$. Technical remark: strictly speaking, we only know F^* is injective on stalks $\mathcal{O}_{X,p}$, so we get $h_x = h_{x'}$ on a possibly smaller open $p \in U_p \subset V_x \cap V_{x'}$, but that is true for all $p \in V_x \cap V_{x'}$ hence $h_x = h_{x'}$ on all of $V_x \cap V_{x'}$.

Finally, these glue together to give a global regular function $h \in \mathcal{O}_Y(Y)$. But Y is affine, so $\mathcal{O}_Y(Y) = k[Y]$ holds.

(c) Choose an affine open cover of W and Z, such that G is given on these affine patches with regular maps. Apply part a) and b) for these morphisms separately, then we get that G induces an injective and surjective morphism between the coordinate rings of the affine charts, which is an isomorphism by the affine Nullstellensatz. So G is an isomorphism of quasi-projective varieties.

Technical remark: That argument takes for granted that $G(\text{affine open})$ is an affine open. This is somewhat tricky to prove using this course's methods. Here is a possible proof. Suppose $G(w) = z$. Pick an affine open $z \in B \subset Z$, then $G^{-1}(B) \subset W$ is open. Pick an affine open $w \in A \subset G^{-1}(B) \subset W$, then $z \in G(A) \subset B \subset Z$ is open. Since B is affine, we can pick a regular function $h : B \to k$ defining a basic open set $z \in D_h \subset G(A) \subset B \subset Z$. Notice $h \circ G : A \to k$ is regular (since by definition of morph of q.p.vars., G is a regular map on small affine opens, and we can shrink B if necessary). Then notice $G^{-1}(D_h) = G^{-1}(G(A) \cap (h \neq 0)) = A \cap (h \circ G \neq 0) = D_{h \circ G} \subset A$ is a basic open in A , containing w. Thus we finally found open affines around w, z with $G: D_{h \circ G} \to D_h$ homeo, so part (b) can be applied.

- (3) Let X be an irreducible affine variety. Show that:
	- (a) $\mathcal{O}_X(U)$ and $\mathcal{O}_{X,p}$ are subrings of $k(X)$.
	- Hint. You need to explain first how to include $\mathcal{O}_X(U) \subset k(X)$ and $\mathcal{O}_{X,p} \subset k(X)$.
	- (b) Restriction maps are inclusions: if $U \subset V$ then $\mathcal{O}_X(V) \subset \mathcal{O}_X(U) \subset k(X)$.
	- (c) $\mathcal{O}_X(U \cup V) = \mathcal{O}_X(U) \cap \mathcal{O}_X(V) \subset k(X)$.
	- (d) $\mathcal{O}_X(U) = \bigcap \mathcal{O}_{X,p} \subset k(X)$, taking the intersection over all $p \in U$.
	- (e) $\mathcal{O}_X(U) = \bigcap \mathcal{O}_X(D_h)$, taking the intersection over all $D_h \subset U$.

Solution.

(a) By the lecture notes, given $f \in \mathcal{O}_X(U)$, one can pass to a basic open set $D_h \subset U$ where $f = \frac{g}{h}$ holds for some $h, g \in k[X]$. Thus $\frac{g}{h} \in k(X) \equiv \text{Frac } k[X]$. That this gives a well-defined inclusion $\mathcal{O}_X(U) \subset k(X)$ is because if two rational functions $\frac{g}{h}, \frac{g'}{h'}$ $\frac{g'}{h'}$: X --> k both equal the rational function $f: X \longrightarrow k$, then $gh' - g'h$ vanishes on a non-empty open (hence dense, by irreducibility) subset of X and hence everywhere (by continuity). Thus $gh' - g'h = 0 \in k[X]$, thus

 $\frac{g}{h} = \frac{g'}{h'} \in k(X)$ by definition of Frac $k[X]$. Thus $\mathcal{O}_X(U) \subset k(X)$, and that it is a subring follows immediately: e.g. for the product, given $f = \frac{g}{h}$, $f' = \frac{g'}{h'}$ $\frac{g}{h'}$, then restriction to $D_{hh'}$ gives $f = \frac{gh'}{hh'}$, $f' = \frac{g'h}{hh'}$ and thus $f \cdot f' = \frac{gh'g'h}{hh'hh'} = \frac{gg'}{hh'}$.

Recall an element of $\mathcal{O}_{X,p}$ is some open set $p \in U \subset X$ together with a function $f: U \to k$ regular at p. The latter means $f = \frac{g}{h}: W \to k$ on some (possibly smaller) open $p \in W \subset U \subset X$, with $g, h \in k[X]$, with g never vanishing on W (by the lecture notes one can in fact shrink W further to ensure that $W = D_h$). Thus $f \in \mathcal{O}_X(W)$ and by above we include this into $k(X)$ by taking $\frac{g}{h}$. This association is well-defined: if we get $f = \frac{g}{h} : W \to k$ and $f' = \frac{g'}{h'}$ $\frac{g'}{h'}:W'\to k$, then they agree on the non-empty (hence dense) open $p \in W \cap W' \subset X$, and thus as before we deduce $gh' - g'h$ vanishes everywhere so $\frac{g}{h} = \frac{g'}{h'} \in k(X)$. The subring property is analogous to before.

- (b) Given $f: V \to k$ regular at each point of V, the restricted function $f|_U: U \to k$ will be regular at each point of U (given $p \in U$, we obtain an open $p \in W \subset V$ where we have an equality of functions $f = \frac{g}{h} : W \to k$, with $g, h \in k[X]$ and h never vanishing on W, so the same holds on the open $p \in W \cap U \subset U$). One can also prove this as a consequence of (3d) below, but that's a bit round-about.
- (c) The inclusion $\mathcal{O}_X(U \cup V) \subset \mathcal{O}_X(U) \cap \mathcal{O}_X(V)$ follows from (3b), and just says that a regular function $f: U \cup V \to k$ is also regular on each open U, V. For the other direction, we need to globalise: if $f \in \mathcal{O}_X(U)$, $f' \in \mathcal{O}_X(V)$ are equal in $k(X)$, then obtain any local representations $f = \frac{g}{h} : W \to k$, $f' = \frac{g'}{h'}$ $\frac{g'}{h'}:W'\to k$ near $p \in U \cup V$, and since we intersect in $k(X)$ we are given that $\frac{g}{h} = \frac{g'}{h'} \in k(X)$. Thus $gh' = g'h \in k[X]$ and thus also as functions $X \to k$. Thus $f = \frac{gh'}{hh'} =$ $\frac{g'h}{hh'} = f': W \cap W' \to k$ (using that hh' never vanishes on $W \cap W'$). Thus the functions f, f' agree at all points of $U \cap V$, so they define a function $U \cup V \to k$. Regularity at each point of $U \cup V$ holds because each point lies in U or V or both, and f is regular on U and f' is regular on V. One can also prove this as a consequence of (3d).
- (d) One inclusion, $\mathcal{O}_X(U) \subset \bigcap \mathcal{O}_{X,p}$, just says that "a function $f: U \to k$ regular on U is regular at each p " (which is true by definition). The other inclusion is less obvious, because we need to globalise by running the same argument as in (3c). Namely, we are given local functions $f_j = \frac{g_j}{h_j}$ $\frac{g_j}{h_j}: W_j \to k$ with $g_j, h_j \in k[X], h_j$ never vanishing on W_j . Since we are intersecting the $\mathcal{O}_{X,p}$ inside $k(X)$, we are also given that $\frac{g_j}{h_j} = \frac{\tilde{g_i}}{h_i} \in k(X)$, which means $g_j h_i = g_i h_j$ in $k[X]$, which in turn implies an equality of functions $g_j h_i = g_i h_j : X \to k$. This implies the equality of functions $\frac{g_j}{h_j} = \frac{g_i}{h_i} : W_j \cap W_i \to k$. Thus the $f_j : W_j \to k$ glue to give a well-defined function $f: U \to k$, since they agree on overlaps. That $f \in \mathcal{O}_X(U)$ is now just the statement that f is regular at each p , which we know since each p lies in some W_j where $f = \frac{g_j}{h_j}$ $\frac{g_j}{h_j}$ and $h_j \neq 0$ on W_j .
- (e) Follows from (3d) by first decomposing $\mathcal{O}_X(D_h) = \bigcap \mathcal{O}_{X,q}$ intersecting over all $q \in D_h$.
- (4) (a) Let $F: X \dashrightarrow Y$ be a rational map of quasi-projective varieties, with X irreducible. If (U, f) is a representation for F, with U affine, show that $\{(u, f(u))\}$: $u \in U$ $\subset U \times Y$ is a closed subvariety. Conclude that the projection from the

4 ALEXANDER RITTER

graph² $\Gamma_F \to X$ is a birational equivalence.

Solution. Assume $Y \subset \mathbb{P}^m$, so F (and f) are given with $m + 1$ regular funtions. Then $\{(u, f(u))|u \in U\} = \mathbb{V}((y_0 - f_0(x), \ldots, y_m - f_m(x)))$. Now recall that $\Gamma_F = \{ (u, f(u)) | u \in U \}.$ The inverse of the projection $(u, y) \mapsto u$ is $u \mapsto (u, f(u))$ mapping to Γ_F , and well-defined on U.

(b) Define $F : \mathbb{A}^2 \to \mathbb{A}^1$ by $F(x, y) = \frac{y}{x}$. Find the equation defining $\Gamma_F \subset \mathbb{A}^3$.

Solution. $U = U_x$, then $\Gamma_F = \overline{\{(x, y, y/x) : x \neq 0\}} = \mathbb{V}(xz - y) \subset \mathbb{A}^3$. (c) Show that the curve $\mathbb{V}(y^2 - x^2 - x^3) \subset \mathbb{A}^2$ is rational.³

- **Solution.** We saw in the lectures that $X = V(y^2 x^2 x^3)$ is birationally equivalent to its blow-up $B_0X = \mathbb{V}(zx - y, z^2 - x - 1) \subset \mathbb{A}^3$. Now the projection on the exceptional divisor gives the birational equivalence with \mathbb{P}^1 , in coordinates: $\alpha: B_0X \to \mathbb{P}^1, (x, y, z) \mapsto [1 : z]$, whose inverse is $(x, y$ expressible with z on $B_0X)$ α^{-1} : \mathbb{P}^1 \dashrightarrow B_0X , $[a:b] \mapsto ((b/a)^2 - 1, (b/a)^3 - b/a, b/a)$, which is well defined where $a \neq 0$.
- (5) Desingularise⁴ $\mathbb{V}(y^2 x^4 x^5) \subset \mathbb{A}^2$. Draw a picture of the series of blow-ups. **Solution.** $X = \mathbb{V}(y^2 - x^4 - x^5)$.

Singular locus: the Jacobian at $p = (x, y)$ is $J_pF = (-4x^3 - 5x^4, 2y) = 0$ iff $(x, y) =$ $(0, 0), (-4/5, 0)$, but $(-4/5, 0)$ is not on the curve. Blowing up at $(0, 0)$ we get $B_0X =$ $\{((x,y), [a:b]): y^2 - x^4 - x^5 = 0, xb = ya, (x,y) \neq (0,0)\}.$ On the affine chart \mathbb{A}^3 $\mathbb{A}^2 \times \mathbb{A}^1 \subset \mathbb{A}^2 \times \mathbb{P}^1$ where $a \neq 0$ we introduce the affine coordinate $z = b/a$ and the equations are $y = xb, (xb)^2 - x^4 - x^5 = 0$, determining two components: $V(x, y)$ (the exceptional divisor) and $\mathbb{V}(y - xb, b^2 - x^2 - x^3 = 0)$.

Side-remark: notice that the exceptional divisor will always show up inside $\pi^{-1}(X)$ since it is $\pi^{-1}(0)$, but we only care about the points of the exceptional divisor that are needed when taking the closure of $\pi^{-1}(X) \setminus \pi^{-1}(0)$. In the case at hand, we only need one extra point: $B_0X \cap E = \{((0,0), [1:0])\}.$

This is a curve in \mathbb{A}^3 , isomorphic (via the projection) to $\mathbb{V}(b^2 - x^2 - x^3) \subset \mathbb{A}^2_{x,b}$. Since B_0X does not contain points of the form $((x, y), [0, 1])$, we get that B_0X is affine,

$$
B_0 X = \mathbb{V}(b^2 - x^2 - x^3) \subset \mathbb{A}_{x,b}^2.
$$

This is a singular plane cubic so repeat the blow-up at the origin. The blow-up is:

$$
\{((x,b), [X,B]) \in \mathbb{A}^2 \times \mathbb{P}^1 : b^2 - x^2 - x^3 = 0, xB - bX = 0\}
$$

On the $X \neq 0$ patch, we use coordinates [1, B] on the \mathbb{P}^1 : $b = xB$, and $(xB)^2 - x^2 - x^3$ becomes $B^2 - 1 - x = 0$ when⁵ we seek the proper transform of B_0X . Taking the closure, we obtain

$$
B_0 B_0 X = \{((x, b), [X, B]) \in \mathbb{A}^2 \times \mathbb{P}^1 : B^2 - X^2 - X^2 x = 0, xB = bX\}
$$

= $\{(x \cdot (1, B), [1, B]) \in \mathbb{A}^2 \times \mathbb{P}^1 : B^2 - 1 - x = 0\}.$

The birational map to \mathbb{P}^1 is defined by projecting to the \mathbb{P}^1 factor.

We remark that $B_0 B_0 X$ is $\mathbb{V}(b - xB, B^2 - 1 - x) \subset \mathbb{A}^3_{x,b,B}$ and thus is isomorphic to

²Recall that the graph Γ_F is defined to be the closure of $\{(u, f(u)) : u \in U\}$.

³Rational means birationally equivalent to \mathbb{P}^1 . Hint. Try blowing up the curve at 0, and consider the map that projects to the exeptional divisor.

⁴Recipe: find the singularities, blow them up, analyse the result and if necessary blow up again.

 5 if $x = 0$ then $b = 0$, but we are considering the preimage of $(x, b) \neq (0, 0)$ and then taking the closure.

the plane quadric $\mathbb{V}(y^2 - x - 1) \subset \mathbb{A}^2_{x,y}$.

Pictures: after the first blow-up: $b^2 - x^2 - x^3$ looks like the letter \propto , where the two strands meet at the origin. Before that blow-up, we had $y^2 - x^4 - x^5$, which looks like an \propto that has been squashed at the origin (so it looks flat along the x-direction near the origin). After the second blow-up, $y^2 - x - 1$ looks like the letter \subset (a parabola).