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ALEXANDER RITTER

(1) (a) Show that if char(k) does not divide d then the hypersurface V(xd
0+. . .+xd

n) ⊂ Pn

is nonsingular.

Solution. Direct computation starting from the definition. Additional details:
dpF =

∑
dpd−1

j · (xj−pj), for this to vanish we would need pj = 0 for all j (since

d 6= 0 ∈ k), but p = 0 is not allowed in P
n.

(b) By computing the dimension of tangent spaces at various points show that the
varieties V(xy(x − y)) ⊂ A2 and V(xy, yz, zx) ⊂ A3 are not isomorphic.

Solution. Geometrically the first case consists of three lines meeting at 0 in A2,
the second case consists of three lines meeting at 0 in A3. Away from the point
where the lines meet, we get the same tangent space as that for A1, so dim = 1.
But at the point where they meet, the span of the tangent lines gives A2 in the
first case, but A3 in the second case. Finally, to conclude, recall that the tangent
space is intrinsic, independent of the embedding into affine space (in particular
it is an isomorphism invariant).

Alternatively, a more computational approach: for p = (p1, p2) ∈ A2

TpV(xy(x − y)) = V((2p1p2 − p22)(x− p1) + (p21 − 2p1p2)(y − p2))

and for p = (p1, p2, p3) ∈ A3, the definition of TpV(xy, yz, zx) is:

V(p2(x− p1) + p1(y − p2), p3(y − p2) + p2(z − p3), p3(x− p1) + p1(z − p3)).

So dim T(0,0,0)V(xy, yz, zx) = 3. If F : V(xy, yz, zx) → V(xy(x − y)) was an
isomorphism, this would induce an isomorphism

T(0,0,0)V(xy, yz, zx) → TF (0,0,0)V(xy(x − y)),

but the latter has dimension ≤ 2.

(2) Let X and Y be irreducible affine varieties. Suppose F : X → Y is a morphism
of affine varieties which is a homeomorphism in the Zariski topology and assume1 it
induces isomorphisms F ∗

x : OY,F (x) → OX,x for every x ∈ X.
(a) Show that F ∗ : k[Y ] → k[X ] is injective.
(b) Suppose g ∈ k[X ]. Show that, for all x ∈ X, there exists an open neighbourhood

Vx of F (x) and a regular function (Vx, hx) ∈ OY,F (x) such that F ∗(Vx, hx) =

(F−1(Vx), g|F−1(Vx)). Show that hx = hx′ in Vx ∩ Vx′ and conclude that there
exists h ∈ k[Y ] such that F ∗h = g.

(c) Now let W and Z be irreducible quasi-projective varieties, and suppose that G :
W → Z is a morphism of quasi-projective varieties which is a homeomorphism
in the Zariski topology, such that for every w ∈ W the ring homomorphism
G∗

w : OZ,G(w) → OW,w is an isomorphism. Show that G is an isomorphism.

1The second assumption is not automatic. Indeed recall the standard example from lectures: A1 →
V(y2 −x3) = {(t2, t3) : t ∈ k}, t 7→ (t2, t3) is a homeomorphism, but it cannot induce isomorphisms on stalks,
otherwise by this exercise the two varieties would have isomorphic coordinate rings which we know is false.

1



2 ALEXANDER RITTER

Solution. Cultural Remark: a high-tech viewpoint of this exercise is that we
have sheaves on W,Z whose stalks are isomorphic, so the sheaves are isomorphic, and
as it is also a homeomorphism on spaces we have an isomorphism of ringed spaces.
(a) F ∗ is injective since F is dominant (indeed F is surjective), using Ex.Sheet.1.

Alternatively: F is a morphism of affine varieties, so F ∗ is the composition

k[Y ] →֒ OY,F (x) → OX,x ⊃ k[X ].

The image sits in k[X ] since the image of f ∈ k[Y ] is the composition of f with a
polynomial map F . The composition is injective as it is a composition of injective
maps.

(b) The first part follows from the fact that g ∈ k[X ] ⊂ OX,x and F ∗

x is surjective.
Since F ∗hx = g|F−1(Vx), F

∗hx′ = g|F−1(Vx′ ), we have the equality F ∗hx = F ∗hx′

on F−1(Vx ∩ Vx′). But F ∗ is injective, so hx = hx′ on Vx ∩ Vx′ .
Technical remark: strictly speaking, we only know F ∗ is injective on stalks OX,p,
so we get hx = hx′ on a possibly smaller open p ∈ Up ⊂ Vx∩Vx′ , but that is true
for all p ∈ Vx ∩ Vx′ hence hx = hx′ on all of Vx ∩ Vx′ .
Finally, these glue together to give a global regular function h ∈ OY (Y ). But Y
is affine, so OY (Y ) = k[Y ] holds.

(c) Choose an affine open cover of W and Z, such that G is given on these affine
patches with regular maps. Apply part a) and b) for these morphisms separately,
then we get that G induces an injective and surjective morphism between the
coordinate rings of the affine charts, which is an isomorphism by the affine Null-
stellensatz. So G is an isomorphism of quasi-projective varieties.
Technical remark: That argument takes for granted that G(affine open) is an
affine open. This is somewhat tricky to prove using this course’s methods. Here
is a possible proof. Suppose G(w) = z. Pick an affine open z ∈ B ⊂ Z, then
G−1(B) ⊂ W is open. Pick an affine open w ∈ A ⊂ G−1(B) ⊂ W , then
z ∈ G(A) ⊂ B ⊂ Z is open. Since B is affine, we can pick a regular func-
tion h : B → k defining a basic open set z ∈ Dh ⊂ G(A) ⊂ B ⊂ Z. Notice
h ◦G : A → k is regular (since by definition of morph of q.p.vars., G is a regu-
lar map on small affine opens, and we can shrink B if necessary). Then notice
G−1(Dh) = G−1(G(A) ∩ (h 6= 0)) = A ∩ (h ◦ G 6= 0) = Dh◦G ⊂ A is a basic
open in A, containing w. Thus we finally found open affines around w, z with
G : Dh◦G → Dh homeo, so part (b) can be applied.

(3) Let X be an irreducible affine variety. Show that:
(a) OX(U) and OX,p are subrings of k(X).

Hint. You need to explain first how to include OX(U) ⊂ k(X) and OX,p ⊂ k(X).
(b) Restriction maps are inclusions: if U ⊂ V then OX(V ) ⊂ OX(U) ⊂ k(X).
(c) OX(U ∪ V ) = OX(U) ∩ OX(V ) ⊂ k(X).
(d) OX(U) =

⋂
OX,p ⊂ k(X), taking the intersection over all p ∈ U .

(e) OX(U) =
⋂
OX(Dh), taking the intersection over all Dh ⊂ U .

Solution.

(a) By the lecture notes, given f ∈ OX(U), one can pass to a basic open set Dh ⊂ U
where f = g

h
holds for some h, g ∈ k[X ]. Thus g

h
∈ k(X) ≡ Frac k[X ]. That

this gives a well-defined inclusion OX(U) ⊂ k(X) is because if two rational

functions g

h
, g′

h′
: X 99K k both equal the rational function f : X 99K k, then

gh′ − g′h vanishes on a non-empty open (hence dense, by irreducibility) subset
of X and hence everywhere (by continuity). Thus gh′ − g′h = 0 ∈ k[X ], thus
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g
h
= g′

h′
∈ k(X) by definition of Frac k[X ]. Thus OX(U) ⊂ k(X), and that it is

a subring follows immediately: e.g. for the product, given f = g
h
, f ′ = g′

h′
, then

restriction to Dhh′ gives f = gh′

hh′
, f ′ = g′h

hh′
and thus f · f ′ = gh′g′h

hh′hh′
= gg′

hh′
.

Recall an element of OX,p is some open set p ∈ U ⊂ X together with a function
f : U → k regular at p. The latter means f = g

h
: W → k on some (possibly

smaller) open p ∈ W ⊂ U ⊂ X , with g, h ∈ k[X ], with g never vanishing on W
(by the lecture notes one can in fact shrink W further to ensure that W = Dh).
Thus f ∈ OX(W ) and by above we include this into k(X) by taking g

h
. This

association is well-defined: if we get f = g

h
: W → k and f ′ = g′

h′
: W ′ → k, then

they agree on the non-empty (hence dense) open p ∈ W ∩W ′ ⊂ X , and thus as

before we deduce gh′ − g′h vanishes everywhere so g
h
= g′

h′
∈ k(X). The subring

property is analogous to before.
(b) Given f : V → k regular at each point of V , the restricted function f |U : U → k

will be regular at each point of U (given p ∈ U , we obtain an open p ∈ W ⊂ V
where we have an equality of functions f = g

h
: W → k, with g, h ∈ k[X ] and h

never vanishing on W , so the same holds on the open p ∈ W ∩U ⊂ U). One can
also prove this as a consequence of (3d) below, but that’s a bit round-about.

(c) The inclusion OX(U ∪ V ) ⊂ OX(U) ∩ OX(V ) follows from (3b), and just says
that a regular function f : U ∪ V → k is also regular on each open U, V . For
the other direction, we need to globalise: if f ∈ OX(U), f ′ ∈ OX(V ) are equal in

k(X), then obtain any local representations f = g
h
: W → k, f ′ = g′

h′
: W ′ → k

near p ∈ U ∪V , and since we intersect in k(X) we are given that g
h
= g′

h′
∈ k(X).

Thus gh′ = g′h ∈ k[X ] and thus also as functions X → k. Thus f = gh′

hh′
=

g′h

hh′
= f ′ : W ∩W ′ → k (using that hh′ never vanishes on W ∩W ′). Thus the

functions f, f ′ agree at all points of U ∩V , so they define a function U ∪ V → k.
Regularity at each point of U ∪ V holds because each point lies in U or V or
both, and f is regular on U and f ′ is regular on V . One can also prove this as a
consequence of (3d).

(d) One inclusion, OX(U) ⊂ ∩OX,p, just says that “a function f : U → k regular on
U is regular at each p” (which is true by definition). The other inclusion is less
obvious, because we need to globalise by running the same argument as in (3c).
Namely, we are given local functions fj =

gj
hj

: Wj → k with gj , hj ∈ k[X ], hj

never vanishing on Wj . Since we are intersecting the OX,p inside k(X), we are
also given that

gj
hj

= gi
hi

∈ k(X), which means gjhi = gihj in k[X ], which in turn

implies an equality of functions gjhi = gihj : X → k. This implies the equality
of functions

gj
hj

= gi
hi

: Wj ∩ Wi → k. Thus the fj : Wj → k glue to give a

well-defined function f : U → k, since they agree on overlaps. That f ∈ OX(U)
is now just the statement that f is regular at each p, which we know since each
p lies in some Wj where f =

gj
hj

and hj 6= 0 on Wj .

(e) Follows from (3d) by first decomposing OX(Dh) = ∩OX,q intersecting over all
q ∈ Dh.

(4) (a) Let F : X 99K Y be a rational map of quasi-projective varieties, with X irre-
ducible. If (U, f) is a representation for F , with U affine, show that {(u, f(u)) :
u ∈ U} ⊂ U × Y is a closed subvariety. Conclude that the projection from the
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graph2 ΓF → X is a birational equivalence.

Solution. Assume Y ⊂ Pm, so F (and f) are given with m + 1 regular fun-
tions. Then {(u, f(u))|u ∈ U} = V((y0−f0(x), . . . , ym−fm(x))). Now recall that

ΓF = {(u, f(u))|u ∈ U}. The inverse of the projection (u, y) 7→ u is u 7→ (u, f(u))
mapping to ΓF , and well-defined on U .

(b) Define F : A2 → A1 by F (x, y) = y

x
. Find the equation defining ΓF ⊂ A3.

Solution. U = Ux, then ΓF = {(x, y, y/x) : x 6= 0} = V(xz − y) ⊂ A3.
(c) Show that the curve V(y2 − x2 − x3) ⊂ A

2 is rational.3

Solution. We saw in the lectures that X = V(y2 − x2 − x3) is birationally
equivalent to its blow-up B0X = V(zx− y, z2−x− 1) ⊂ A3. Now the projection
on the exceptional divisor gives the birational equivalence with P1, in coordinates:
α : B0X → P1, (x, y, z) 7→ [1 : z], whose inverse is (x, y expressible with z on
B0X) α−1 : P1

99K B0X, [a : b] 7→ ((b/a)2 − 1, (b/a)3 − b/a, b/a), which is well
defined where a 6= 0.

(5) Desingularise4 V(y2 − x4 − x5) ⊂ A
2. Draw a picture of the series of blow-ups.

Solution. X = V(y2 − x4 − x5).
Singular locus: the Jacobian at p = (x, y) is JpF = (−4x3 − 5x4, 2y) = 0 iff (x, y) =
(0, 0), (−4/5, 0), but (−4/5, 0) is not on the curve. Blowing up at (0, 0) we get B0X =

{((x, y), [a : b]) : y2 − x4 − x5 = 0, xb = ya, (x, y) 6= (0, 0)}. On the affine chart A3 =
A2 × A1 ⊂ A2 × P1 where a 6= 0 we introduce the affine coordinate z = b/a and the
equations are y = xb, (xb)2 − x4 − x5 = 0, determining two components: V(x, y) (the
exceptional divisor) and V(y − xb, b2 − x2 − x3 = 0}.
Side-remark: notice that the exceptional divisor will always show up inside π−1(X)
since it is π−1(0), but we only care about the points of the exceptional divisor that
are needed when taking the closure of π−1(X) \ π−1(0). In the case at hand, we only
need one extra point: B0X ∩ E = {((0, 0), [1 : 0])}).

This is a curve in A3, isomorphic (via the projection) to V(b2 − x2 − x3) ⊂ A2
x,b.

Since B0X does not contain points of the form ((x, y), [0, 1]), we get that B0X is
affine,

B0X = V(b2 − x2 − x3) ⊂ A
2
x,b.

This is a singular plane cubic so repeat the blow-up at the origin.
The blow-up is:

{((x, b), [X,B]) ∈ A
2 × P

1 : b2 − x2 − x3 = 0, xB − bX = 0}

On the X 6= 0 patch, we use coordinates [1, B] on the P1: b = xB, and (xB)2−x2−x3

becomes B2 − 1 − x = 0 when5 we seek the proper transform of B0X . Taking the
closure, we obtain

B0B0X = {((x, b), [X,B]) ∈ A2 × P1 : B2 −X2 −X2x = 0, xB = bX}
= {(x · (1, B), [1, B]) ∈ A2 × P1 : B2 − 1− x = 0}.

The birational map to P1 is defined by projecting to the P1 factor.
We remark that B0B0X is V(b− xB,B2 − 1− x) ⊂ A3

x,b,B and thus is isomorphic to

2Recall that the graph ΓF is defined to be the closure of {(u, f(u)) : u ∈ U}.
3Rational means birationally equivalent to P1. Hint. Try blowing up the curve at 0, and consider the map

that projects to the exeptional divisor.
4Recipe: find the singularities, blow them up, analyse the result and if necessary blow up again.
5if x = 0 then b = 0, but we are considering the preimage of (x, b) 6= (0, 0) and then taking the closure.
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the plane quadric V(y2 − x− 1) ⊂ A2
x,y.

Pictures: after the first blow-up: b2 − x2 − x3 looks like the letter ∝, where the two
strands meet at the origin. Before that blow-up, we had y2−x4−x5, which looks like
an ∝ that has been squashed at the origin (so it looks flat along the x-direction near
the origin). After the second blow-up, y2 − x− 1 looks like the letter ⊂ (a parabola).


