Solutions to initial problem sheet

1. The *n*-sphere is $S^n = \{(x_0, ..., x_n) \in \mathbb{R}^{n+1} : x_0^2 + \cdots + x_n^2 = 1\}$. It has an atlas $\{(U_1, \phi_1), (U_2, \phi_2)\}$ with two charts, where $U_1 = U_2 = \mathbb{R}^n$, $\phi_1(U_1) = S^n \setminus \{(-1, 0, ..., 0)\}$, $\phi_2(U_2) = S^n \setminus \{(1, 0, ..., 0)\}$, and ϕ_1, ϕ_2 are the inverses of

$$\phi_1^{-1}: (x_0, \dots, x_n) \longmapsto \frac{1}{1+x_0} (x_1, \dots, x_n) = (y_1, \dots, y_n)$$

$$\phi_2^{-1}: (x_0, \dots, x_n) \longmapsto \frac{1}{1-x_0} (x_1, \dots, x_n) = (z_1, \dots, z_n).$$

Show that S^n is a Hausdorff, second countable topological space. Compute the transition function $\phi_2^{-1} \circ \phi_1$ between (U_1, ϕ_1) and (U_2, ϕ_2) , and show that it is smooth with smooth inverse.

Thus $\{(U_1, \phi_1), (U_2, \phi_2)\}$ is an atlas on \mathcal{S}^n , which extends to a unique maximal atlas, making \mathcal{S}^n into a smooth n-dimensional manifold.

Answer. To show S^n is Hausdorff, suppose $(x_0, \ldots, x_n), (y_0, \ldots, y_n) \in S^n$ are distinct. Then $x_i \neq y_i$ for some $i = 0, \ldots, n$. If $x_i < y_i$, pick $c \in (x_i, y_i)$ and set

$$U = \{(z_0, \dots, z_n) \in \mathcal{S}^n : z_i < c\}, \quad V = \{(z_0, \dots, z_n) \in \mathcal{S}^n : z_i > c\}.$$

Then U, V are disjoint open sets in S^n with $x \in U$, $y \in V$. If $x_i > y_i$, swap U, V. Thus S^n is Hausdorff.

To show S^n is second countable, note that \mathbb{R}^{n+1} is second countable, since

$$\mathcal{B} = \{ (a_0, b_0) \times (a_1, b_1) \times \dots \times (a_n, b_n) : a_i, b_i \in \mathbb{Q}, \ a_i < b_i \}$$

is a countable basis for its topology. Hence $\{U \cap S^n : U \in \mathcal{B}\}$ is a countable basis for the topology of S^n .

The transition map is $\phi_2^{-1} \circ \phi_1 : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}$ mapping $(y_1, \dots, y_n) \longmapsto (z_1, \dots, z_n) = \frac{1}{y_1^2 + \dots + y_n^2} (y_1, \dots, y_n)$. This is clearly smooth. The inverse $(\phi_2^{-1} \circ \phi_1)^{-1}$ is given by the same formula, and is also smooth.

2. The *n*-dimensional projective space \mathbb{RP}^n is the set of 1-dimensional vector subspaces of \mathbb{R}^{n+1} . Points in \mathbb{RP}^n are written $[x_0, x_1, \ldots, x_n]$ for (x_0, \ldots, x_n) in $\mathbb{R}^{n+1} \setminus \{0\}$, where $[x_0, \ldots, x_n] = \mathbb{R} \cdot (x_0, \ldots, x_n) \subseteq \mathbb{R}^{n+1}$, and $[\lambda x_0, \ldots, \lambda x_n] = [x_0, \ldots, x_n]$ for $\lambda \in \mathbb{R} \setminus \{0\}$. It has the quotient topology induced from the surjective projection $\pi : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{RP}^n$, $\pi : (x_0, \ldots, x_n) \mapsto [x_0, \ldots, x_n]$.

Define a chart (V_i, ψ_i) on \mathbb{RP}^n for $i = 0, \dots, n+1$ by $V_i = \mathbb{R}^n$ and

$$\psi_i(y_1,\ldots,y_n) = [y_1,\ldots,y_{i-1},1,y_i,\ldots,y_n].$$

Compute the transition functions $\psi_j^{-1} \circ \psi_i$ between (V_i, ψ_i) and (V_j, ψ_j) , for $0 \le i < j \le n+1$, and that they are smooth with smooth inverses.

Thus $\{(V_i, \psi_i) : i = 0, \dots, n\}$ is an atlas on \mathbb{RP}^n , which extends to a unique maximal atlas, making \mathbb{RP}^n into a smooth n-dimensional manifold.

Answer. The transition function from (V_i, ψ_i) and (V_j, ψ_j) for i < j is

$$\psi_j^{-1} \circ \psi_i : \left\{ (y_1, \dots, y_n) \in \mathbb{R}^n : y_{j-1} \neq 0 \right\} \longmapsto \left\{ (z_1, \dots, z_n) \in \mathbb{R}^n : z_i \neq 0 \right\},$$

$$\psi_j^{-1} \circ \psi_i : (y_1, \dots, y_n) \longmapsto \left(\frac{y_1}{y_{j-1}}, \dots, \frac{y_{i-1}}{y_{j-1}}, \frac{1}{y_{j-1}}, \frac{y_i}{y_{j-1}}, \dots, \frac{y_{j-2}}{y_{j-1}}, \frac{y_j}{y_{j-1}}, \dots, \frac{y_n}{y_{j-1}} \right).$$

This is clearly smooth, with smooth inverse given by

$$(\psi_j^{-1} \circ \psi_i)^{-1} : (z_1, \dots, z_n) \longmapsto (\frac{z_1}{z_i}, \dots, \frac{z_{i-1}}{z_i}, \frac{z_{i+1}}{z_i}, \dots, \frac{z_{j-1}}{z_i}, \frac{1}{z_i}, \frac{z_j}{z_i}, \dots, \frac{z_n}{z_i}).$$

3. Define $f: \mathcal{S}^n \to \mathbb{RP}^n$ by $f(x_0, \dots, x_n) = [x_0, \dots, x_n]$. Show that f is a smooth surjective map of differentiable manifolds, and that for each $y \in \mathbb{RP}^n$, the inverse image $f^{-1}(y)$ consists of two points.

Answer. Note that f is the composition $\mathcal{S}^n \stackrel{\iota}{\hookrightarrow} \mathbb{R}^{n+1} \setminus \{0\} \stackrel{\pi}{\longrightarrow} \mathbb{RP}^n$, where ι is the inclusion and π the projection. But ι, π are continuous by definition of the topologies on $\mathcal{S}^n, \mathbb{RP}^n$, so f is continuous.

To show that f is smooth, consider for example the charts (U_1, ϕ_1) on \mathcal{S}^n and (V_i, ψ_i) on \mathbb{RP}^n for i > 0. Then we have a diagram

$$(f \circ \phi_1)^{-1}(\psi_i(V_i)) = \{(y_1, \dots, y_n) \in \mathbb{R}^n : y_i \neq 0\} \xrightarrow{\phi_1|\dots} \mathcal{S}^n$$

$$\downarrow^{\psi_i^{-1} \circ f \circ \phi_1} \qquad \qquad \downarrow^{\psi_i}$$

$$V_i = \mathbb{R}^n \xrightarrow{\psi_i} \mathbb{RP}^n.$$

Here for $(y_1, \ldots, y_n) \in (f \circ \phi_1)^{-1}(\psi_i(V_i))$, if $\phi_1(y_1, \ldots, y_n) = (x_0, \ldots, x_n)$, and $f \circ \phi_1(y_1, \ldots, y_n) = [x_0, \ldots, x_n]$, and $\psi_i^{-1} \circ f \circ \phi_1(y_1, \ldots, y_n) = (z_1, \ldots, z_n)$, then

$$(y_1, \dots, y_n) = \frac{1}{1 + x_0} (x_1, \dots, x_n),$$

$$(z_1, \dots, z_n) = \left(\frac{x_0}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_n}{x_i}\right).$$

Solving the first equation using $x_0^2 + \cdots + x_n^2 = 1$ gives

$$x_0 = \frac{1 - y_1^2 - \dots - y_n^2}{1 + y_1^2 + \dots + y_n^2}, \quad 1 + x_0 = \frac{2}{1 + y_1^2 + \dots + y_n^2},$$
$$x_i = \frac{2y_i}{1 + y_1^2 + \dots + y_n^2}, \quad i = 1, \dots, n.$$

Putting all this together shows that $\psi_i^{-1} \circ f \circ \phi_1$ maps

$$\psi_i^{-1} \circ f \circ \phi_1 : (y_1, \dots, y_n) \mapsto \left(\frac{1 - y_1^2 - \dots - y_n^2}{2y_i}, \frac{y_1}{y_i}, \dots, \frac{y_{i-1}}{y_i}, \frac{y_{i+1}}{y_i}, \dots, \frac{y_n}{y_i}\right).$$

This is smooth on $y_i \neq 0$. Similarly we show that the transition functions for each chart from $\{(U_1, \phi_1), (U_2, \phi_2)\}$ and each chart from $\{(V_i, \psi_i) : i = 0, \ldots, n\}$ is smooth. So f is smooth on the charts of atlases for \mathcal{S}^n , \mathbb{RP}^n , and thus it is smooth.

To see that $f^{-1}([y_0,\ldots,y_n])$ is 2 points, note that for a fixed representative (y_0,\ldots,y_n) for $[y_0,\ldots,y_n]$, we have

$$f^{-1}([y_0, \dots, y_n]) = \{(\lambda y_0, \dots, \lambda y_n) : \lambda \in \mathbb{R} \setminus \{0\}, \ \lambda^2(y_0^2 + \dots + y_n^2) = 1\},$$

and there are two solutions $\lambda = \pm (y_0^2 + \dots + y_n^2)^{-1/2}$.