Problem Sheet 2

1(a) Let X be the sphere $\mathcal{S}^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}: x_{0}^{2}+\cdots+x_{n}^{2}=1\right\}$. Explain why we may identify

$$
T_{\left(x_{0}, \ldots, x_{n}\right)} \mathcal{S}^{n} \cong\left\{\left(y_{0}, \ldots, y_{n}\right) \in \mathbb{R}^{n+1}: x_{0} y_{0}+\cdots+x_{n} y_{n}=0\right\}
$$

(b) By identifying $\mathbb{R}^{2 k+2} \cong \mathbb{C}^{k+1}$, show that any odd-dimensional sphere $\mathcal{S}^{2 k+1}$ has a nonvanishing vector field $v \in C^{\infty}\left(T \mathcal{S}^{2 k+1}\right)$ (i.e. $v \neq 0$ at every point).
For discussion: can the same thing hold for even-dimensional spheres $\mathcal{S}^{2 k}$?
2^{*}. Let X^{n} be a compact n-dimensional manifold covered by coordinate neighbourhoods U_{α}, with coordinate maps $\psi_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}^{n}$. Show by using compactness that there exists a finite set of bump functions $\varphi_{1}, \ldots, \varphi_{k}$ such that for each $x \in X$ at least one φ_{i} is identically 1 in a neighbourhood of x, and the support of each φ_{i} is contained in $U_{\alpha(i)}$ for some $\alpha(i)$.
Now define $F: X \rightarrow \mathbb{R}^{k(n+1)}$ by

$$
F(x)=\left(\varphi_{1}, \ldots, \varphi_{k}, \varphi_{1} \psi_{\alpha(1)}, \varphi_{2} \psi_{\alpha(2)}, \ldots \varphi_{k} \psi_{\alpha(k)}\right)(x)
$$

Show that:
(i) F is injective.
(ii) the derivative of F is injective at each point $x \in X$.
(iii) the manifold topology is the induced topology.

Deduce that $F: X \rightarrow \mathbb{R}^{k(n+1)}$ is an embedding.
(This is a special case of the Whitney Embedding Theorem.)
3. Let X be a manifold and $v, w \in C^{\infty}(T X)$. Suppose $\left(x_{1}, \ldots, x_{n}\right)$ are local coordinates on an open set $U \subseteq X$, so that we may write $v=v_{1} \frac{\partial}{\partial x_{1}}+\cdots+$ $v_{n} \frac{\partial}{\partial x_{n}}$ and $w=w_{1} \frac{\partial}{\partial x_{1}}+\cdots+w_{n} \frac{\partial}{\partial x_{n}}$ on U, for $v_{i}, w_{j}: U \rightarrow \mathbb{R}$ smooth.
Define the Lie bracket $[v, w] \in C^{\infty}(T X)$ by

$$
\begin{equation*}
[v, w]=\sum_{i, j=1}^{n}\left(v_{i} \frac{\partial w_{j}}{\partial x_{i}} \cdot \frac{\partial}{\partial x_{j}}-w_{j} \frac{\partial v_{i}}{\partial x_{j}} \cdot \frac{\partial}{\partial x_{i}}\right) \quad \text { on } U . \tag{1}
\end{equation*}
$$

Prove that this is independent of choice of local coordinates. That is, if $\left(y_{1}, \ldots, y_{n}\right)$ is another local coordinate system on $V \subseteq X$, then (1) and its analogue for $\left(y_{1}, \ldots, y_{n}\right), V$ define the same vector field on $U \cap V$.
4. Find the vector fields u, v, w on \mathbb{R}^{2} given by the following three oneparameter groups of diffeomorphisms:

- $\varphi_{t}\left(x_{1}, x_{2}\right)=\left(x_{1}+t, x_{2}\right)$.
- $\varphi_{t}\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}+t\right)$.
- $\varphi_{t}\left(x_{1}, x_{2}\right)=\left((\cos t) x_{1}+(\sin t) x_{2},(-\sin t) x_{1}+(\cos t) x_{2}\right)$.

Show that the Lie bracket of any pair of u, v, w is a linear combination of u, v, w (with constant coefficients).
5. Let A be an $n \times n$ matrix and consider the vector field v in \mathbb{R}^{n} defined by

$$
v=\sum_{i, j} A_{i j} x_{j} \frac{\partial}{\partial x_{i}}
$$

Use the exponential of a matrix:

$$
\exp C=I+C+\frac{C^{2}}{2}+\cdots+\frac{C^{n}}{n!}+\cdots
$$

to integrate this vector field to a one-parameter group of diffeomorphisms.

