Problem Sheet 3

1. Take $\alpha \in \Lambda^{k} V$ where $\operatorname{dim} V=n$ and consider the linear map A_{α} : $\Lambda^{n-k} V \rightarrow \Lambda^{n} V$ defined by $A_{\alpha}(\beta)=\alpha \wedge \beta$.
(i) Show that if $\alpha \neq 0$, then $A_{\alpha} \neq 0$.
(ii) Prove that the map $\alpha \mapsto A_{\alpha}$ is an isomorphism from $\Lambda^{k} V$ to the vector space $\operatorname{Hom}\left(\Lambda^{n-k} V, \Lambda^{n} V\right)$ of linear maps from $\Lambda^{n-k} V$ to $\Lambda^{n} V$. Thus if we choose an isomorphism $\Lambda^{n} V \cong \mathbb{R}$ we get isomorphisms $\Lambda^{k} V \cong\left(\Lambda^{n-k} V\right)^{*}$.
2. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $F(x, y, z)=(x y, y z, z x)$. Calculate $F^{*}(x \mathrm{~d} y \wedge \mathrm{~d} z)$ and $F^{*}(x \mathrm{~d} y+y \mathrm{~d} z)$.
3. Show that the product $X \times Y$ of two orientable manifolds is orientable.
4. Is $\mathcal{S}^{2} \times \mathbb{R P}^{2}$ orientable? What about $\mathbb{R}^{2} \times \mathbb{R}^{2}$?
5. A Riemann surface is defined as a 2 -dimensional manifold X with an atlas $\left\{\left(U_{i}, \phi_{i}\right): i \in I\right\}$ whose transition maps $\phi_{j}^{-1} \circ \phi_{i}$ for $i, j \in I$ are maps from an open set $\phi_{i}^{-1}\left(\phi_{j}\left(U_{j}\right)\right)$ of $\mathbb{C}=\mathbb{R}^{2}$ to another open set $\phi_{j}^{-1}\left(\phi_{i}\left(U_{j}\right)\right)$ which are holomorphic and invertible. By considering the Jacobian of $\phi_{j}^{-1} \circ \phi_{i}$, show that a Riemann surface is orientable.
P.T.O.

6*. The objective of this question is to prove that for all $n>0$

$$
H^{k}\left(\mathcal{S}^{0}\right) \cong\left\{\begin{array} { l l }
{ \mathbb { R } ^ { 2 } , } & { k = 0 , } \tag{1}\\
{ 0 , } & { \text { otherwise } , }
\end{array} \quad H ^ { k } (\mathcal { S } ^ { n }) \cong \left\{\begin{array}{ll}
\mathbb{R}, & k=0, n \\
0, & \text { otherwise }
\end{array}\right.\right.
$$

You may assume the following facts from lectures:

- $H^{0}(X) \cong \mathbb{R}^{N}$, where N is the number of connected components of X.
- $H^{0}\left(\mathbb{R}^{n}\right)=\mathbb{R}$ and $H^{k}\left(\mathbb{R}^{n}\right)=0, k>0$.
- $H^{k}\left(X \times \mathbb{R}^{n}\right) \cong H^{k}(X)$ for all manifolds X and $k, n \geq 0$.

Define $U=\mathcal{S}^{n} \backslash\{(1,0, \ldots, 0)\}, V=\mathcal{S}^{n} \backslash\{(-1,0, \ldots, 0)\}$ and $W=U \cap V$. Then U, V, W are open in \mathcal{S}^{n} with $\mathcal{S}^{n}=U \cup V$, and we have diffeomorphisms

$$
U \cong \mathbb{R}^{n}, \quad V \cong \mathbb{R}^{n}, \quad W \cong \mathcal{S}^{n-1} \times \mathbb{R}
$$

If $B \subseteq A \subseteq \mathcal{S}^{n}$ are open, write $\rho_{A B}: \Omega^{k}(A) \rightarrow \Omega^{k}(B)$ for the restriction map. Then we have an exact sequence

$$
0 \longrightarrow \Omega^{k}\left(\mathcal{S}^{n}\right) \xrightarrow{\rho_{\mathcal{S}^{n} U} \oplus \rho_{\mathcal{S}^{n} V}} \Omega^{k}(U) \oplus \Omega^{k}(V) \xrightarrow{\rho_{U W} \oplus-\rho_{V W}} \Omega^{k}(W) \longrightarrow 0
$$

(a) Suppose $\alpha \in \Omega^{k}\left(\mathcal{S}^{n}\right)$ for $k>1$ with $\mathrm{d} \alpha=0$. Show that there exist $\beta \in \Omega^{k-1}(U)$ and $\gamma \in \Omega^{k-1}(V)$ with $\left.\alpha\right|_{U}=\mathrm{d} \beta$ and $\left.\alpha\right|_{V}=\mathrm{d} \gamma$. Set $\delta=\left.\beta\right|_{W}-\left.\gamma\right|_{W} \in \Omega^{k-1}(W)$. Show that $\mathrm{d} \delta=0$.
We have cohomology classes $[\alpha] \in H^{k}\left(\mathcal{S}^{n}\right)$ and $[\delta] \in H^{k-1}(W)$. Show that $[\delta]$ depends only on $[\alpha]$, not on the choices of α, β, γ. Thus we may define a linear map $\Phi: H^{k}\left(\mathcal{S}^{n}\right) \rightarrow H^{k-1}(W), \Phi:[\alpha] \mapsto[\delta]$.
(b) Suppose $[\delta]=\Phi([\alpha])=0$. Then $\delta=\mathrm{d} \epsilon$ for $\epsilon \in \Omega^{k-2}(W)$. Prove that $[\alpha]=0$ in $H^{k}\left(\mathcal{S}^{n}\right)$, so that Φ is injective.
Hint: Let $\left\{\eta_{U}, \eta_{V}\right\}$ be a partition of unity on \mathcal{S}^{n} subordinate to $\{U, V\}$, and consider $\left.\beta\right|_{W}-\mathrm{d}\left(\eta_{V} \epsilon\right)$ and $\left.\gamma\right|_{W}+\mathrm{d}\left(\eta_{U} \epsilon\right)$ in $\Omega^{k-1}(W)$.
(c) Suppose $\delta \in \Omega^{k-1}(W)$ with $\mathrm{d} \delta=0$. Show that we can choose α, β, δ in (a) giving this δ. Then $\Phi([\alpha])=[\delta]$, so that Φ is surjective.

Hint: Choose α, β, γ such that $\left.\alpha\right|_{W}=\mathrm{d} \eta_{V} \wedge \delta=-\mathrm{d} \eta_{U} \wedge \delta$.
(d) Use (a)-(c) and the facts above to show $H^{k}\left(\mathcal{S}^{n}\right) \cong H^{k-1}\left(\mathcal{S}^{n-1}\right)$ if $k>1$.
(e) What goes wrong in part (a) if $k=1$? Adapt your arguments to show that $H^{1}\left(\mathcal{S}^{1}\right) \cong \mathbb{R}$, and $H^{1}\left(\mathcal{S}^{n}\right)=0$ for $n>1$.
(f) Deduce (1) by induction on n.

