Problem Sheet 4

1. Let $f: X \rightarrow Z$ be a smooth map of a compact oriented manifold X of dimension k to a manifold Z, and $\alpha \in \Omega^{k}(Z)$ be a closed k-form on Z. Show by integrating $f^{*}(\alpha)$ on X that f defines a linear map $L_{f}: H^{k}(Z) \rightarrow \mathbb{R}$.
Let $g: Y \rightarrow Z$ be a smooth map from a compact oriented $(k+1)$-manifold with boundary Y, such that $\partial Y=X$ and $\left.g\right|_{\partial Y}=f$. Show using Stokes' Theorem that $L_{f}=0$.

2(a) On the circle $\mathcal{S}^{1} \subset \mathbb{R}^{2}$ denote by $\mathrm{d} \theta$ the 1 -form

$$
\mathrm{d} \theta=\frac{\mathrm{d} x_{2}}{x_{1}}=-\frac{\mathrm{d} x_{1}}{x_{2}} .
$$

Now consider the product manifold $T^{n}=\mathcal{S}^{1} \times \cdots \times \mathcal{S}^{1}$, and let $\pi_{i}: T^{n} \rightarrow \mathcal{S}^{1}$ be the projection onto the $i^{\text {th }}$ factor. By considering the exterior product of all the forms $\pi_{i}^{*}(\mathrm{~d} \theta)$, deduce that the de Rham cohomology classes $\pi_{i}^{*}([\mathrm{~d} \theta])$ for $i=1, \ldots, n$ are linearly independent in $H^{1}\left(T^{n}\right)$.
(b) Let $n>1$ and let $f: \mathcal{S}^{n} \rightarrow T^{n}$ be a smooth map. Noting that $H^{1}\left(\mathcal{S}^{n}\right)=$ 0 , prove that the degree of f is zero.
3. What is the degree of the map $\mathrm{x} \mapsto-\mathrm{x}$ on the sphere \mathcal{S}^{n} ?
4. The quaternions consist of the four-dimensional associative algebra \mathbb{H} of expressions $q=x_{0}+i x_{1}+j x_{2}+k x_{3}$ where $x_{i} \in \mathbb{R}$ and i, j, k satisfy the relations

$$
i^{2}=j^{2}=k^{2}=-1, \quad i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j .
$$

Show that if $\bar{q}=x_{0}-i x_{1}-j x_{2}-k x_{3}$ then $q \bar{q}=\|q\|^{2}$ and $\|a b\|^{2}=\|a\|^{2}\|b\|^{2}$.
Show that $f(q)=q^{2}$ defines a smooth map from $\mathbb{R}^{4} \cup\{\infty\} \cong \mathcal{S}^{4}$ to itself. How many solutions are there to the equation $q^{2}=1$?

What is the degree of f ?
How many solutions are there to the equation $q^{2}=-1$?
5. Write down in coordinates x_{2}, \ldots, x_{n} where $x_{1} \neq 0$, the induced Riemannian metric on the sphere $\mathcal{S}^{n-1} \subset \mathbb{R}^{n}$. Show that its volume form is $\omega=x_{1}^{-1} \mathrm{~d} x_{2} \wedge \cdots \wedge \mathrm{~d} x_{n}$.
6. Let

$$
v=a(x, y) \frac{\partial}{\partial x}+b(x, y) \frac{\partial}{\partial y}
$$

be a vector field in \mathbb{R}^{2} such that

$$
\mathcal{L}_{v}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}\right)=0
$$

Solve this equation for a and b. Show that each vector field integrates to a one parameter group of diffeomorphisms, each of which is of the form

$$
\varphi(\mathrm{x})=A \mathbf{x}+\mathbf{c}
$$

where A is a rotation and \mathbf{c} a constant vector.

