
Professor Joyce C3.3 Differentiable Manifolds MT 2018

Solutions to Problem Sheet 4

1. Let f : X → Z be a smooth map of a compact oriented manifold X of
dimension k to a manifold Z, and α ∈ Ωk(Z) be a closed k-form on Z. Show
by integrating f ∗(α) on X that f defines a linear map Lf : Hk(Z) → R.

Let g : Y → Z be a smooth map from a compact oriented (k + 1)-manifold
with boundary Y , such that ∂Y = X and g|∂Y = f . Show using Stokes’
Theorem that Lf = 0.

Answer.
f ∗(λ1α1 + λ2α2) = λ1f

∗α1 + λ2f
∗α2

and integration of forms is linear, so

α 7→

∫

X

f ∗(α)

is a linear map on all forms. Now if α = dβ then
∫

X

f ∗(dβ) =

∫

X

df ∗(β) = 0

by Stokes’ theorem, so the linear map vanishes on exact forms and gives a
well-defined map Lf from closed forms modulo exact forms which is the k-th
cohomology group.

If g restricts to f on ∂Y = X, then by Stokes’ Theorem
∫

X

f ∗(α) =

∫

∂Y

g∗(α) =

∫

Y

dg∗(α) =

∫

Y

g∗(dα) = 0,

since dα = 0.

2(a) On the circle S1 ⊂ R
2 denote by dθ the 1-form

dθ =
dx2

x1

= −
dx1

x2

.

Now consider the product manifold T n = S1×· · ·×S1, and let πi : T
n → S1

be the projection onto the ith factor. By considering the exterior product of
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all the forms π∗
i (dθ), deduce that the de Rham cohomology classes π∗

i ([dθ])
for i = 1, . . . , n are linearly independent in H1(T n).

(b) Let n > 1 and let f : Sn → T n be a smooth map. Noting that H1(Sn) =
0, prove that the degree of f is zero.

Answer. (a)On the product manifold T n, the map (θ1, . . . , θn) ∈ (0, 2π)n 7→
(eiθ1 , . . . , eiθn) is a coordinate chart with open dense image. In these coordi-
nates π∗

1(dθ) ∧ · · · ∧ π∗
n(dθ) = dθ1 ∧ dθ2 ∧ · · · ∧ dθn. This is non-vanishing

and defines an orientation. Integrating gives (2π)n which is non-zero. By
Stokes’ theorem for a compact orientable manifold the cohomology class
π∗
1[dθ] ∪ · · · ∪ π∗

n[dθ] is therefore non-zero.

If π∗
n[dθ], say, is linearly dependent on the others then

π∗

1[dθ] . . . π
∗

n[dθ] =
∑

i<n

π∗

1[dθ] . . . π
∗

n−1[dθ]ciπ
∗

i [dθ]

but then there are repeated π∗
i [dθ]’s in each term and since these are of degree

one and anticommute we get zero: contradiction.

(b) We have Hn(Sn) ∼= R and Hn(T n) ∼= R as both are connected and
oriented, and by (a) we know that π∗

1[dθ]∪ · · ·∪π∗
n[dθ] is nonzero in Hn(T n).

So
f ∗
(

π∗

1[dθ] ∪ · · · ∪ π∗

n[dθ]
)

= f ∗
(

π∗

1[dθ]
)

∪ · · · ∪ f ∗
(

π∗

n[dθ]
)

= 0,

since pullbacks f ∗ : Hk(T n) → Hk(Sn) commute with cup products, and
f ∗
(

π∗
1[dθ]

)

= 0 in H1(Sn) = 0. But f ∗ : Hn(T n) → Hn(Sn) is multiplication
by deg f , so deg f = 0.

3. What is the degree of the map x 7→ −x on the sphere Sn?

Answer. The standard non-vanishing n-form on Sn is

ω =
1

xn+1

dx1 ∧ dx2 ∧ . . . ∧ dxn

so if f : Sn → Sn is given by f(x) = −x,

f ∗ω = (−1)n−1ω.

Since
∫

Sn

f ∗ω = deg f

∫

Sn

ω
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we have
deg f = (−1)n−1.

4. The quaternions consist of the four-dimensional associative algebra H of
expressions q = x0 + ix1 + jx2 + kx3 where xi ∈ R and i, j, k satisfy the
relations

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Show that if q̄ = x0− ix1− jx2−kx3 then qq̄ = ‖q‖2 and ‖ab‖2 = ‖a‖2‖b‖2.

Show that f(q) = q2 defines a smooth map from R
4 ∪ {∞} ∼= S4 to itself.

How many solutions are there to the equation q2 = 1?

What is the degree of f?

How many solutions are there to the equation q2 = −1?

Answer. First part is Algebra – just work it out.

f(q) = q2 is polynomial so is smooth on R
4. Now f(∞) = ∞ and q/‖q‖2 =

1/q̄. But
f(1/q̄) = (1/q̄)2

and this is polynomial in z = 1/q̄.

If q2 = 1 then q2(q̄)2 = 1 and so

1 = qqq̄q̄ = q‖q‖2q̄ = ‖q‖2qq̄ = ‖q‖4

so ‖q‖2 = 1 = qq̄. Thus

0 = q2 − qq̄ = q(q − q̄)

and since q 6= 0, q = q̄, so that q is real. Since q2 = 1, q = ±1, and there are
two solutions.

The derivative of f at q = ±1 is

Tqf(q̇) = q̇q + qq̇ = ±2q̇

which is invertible, so 1 is a regular value, with 2 inverse images. In 4-
dimensions the map

x 7→ ±2x
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has positive determinant, so the orientation is preserved and the degree is
therefore 2.

As before, if q2 = −1, qq̄ = 1 and so

0 = q2 + qq̄ = q(q + q̄).

Since q 6= 0, q + q̄ = 0. Conversely, if q + q̄ = 0 and qq̄ = 1, q2 = −1. So
there is a 2-sphere of solutions

q = ix1 + jx2 + kx3

where x2
1 + x2

2 + x2
3 = 1.

5. Write down in coordinates x2, . . . , xn where x1 6= 0, the induced Rie-
mannian metric on the sphere Sn−1 ⊂ R

n. Show that its volume form is
ω = x−1

1 dx2 ∧ · · · ∧ dxn.

Answer. We have
x2
1 + x2

2 + · · ·+ x2
n = 1

and so

x1dx1 = −

n
∑

2

xidxi.

Hence
n
∑

i=1

dx2
i =

n
∑

i=2

dx2
i + x−2

1

(

n
∑

i=2

xidxi

)2

The matrix gij of this is

gij = δij + x−2
1 xixj .

Take an orthonormal basis e1, . . . , en−1 in R
n−1 ∋ (x2, . . . , xn) with its usual

Euclidean metric such that

e1 = (x2, . . . , xn)/

√

√

√

√(
n
∑

i=2

x2
i )
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then the symmetric matrix g becomes diagonal with eigenvalues

1 + x−2
1 (

n
∑

i=2

x2
i ), 1, 1, . . . , 1

i.e.
1 + (1− x2

1)/x
2
1 = 1/x2

1, 1, 1, . . . , 1

The volume form is therefore

√

det g dx2 ∧ · · · ∧ dxn = x−1
1 dx2 ∧ · · · ∧ dxn.

6. Let

v = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y

be a vector field in R
2 such that

Lv(dx
2 + dy2) = 0

Solve this equation for a and b. Show that each vector field integrates to a
one parameter group of diffeomorphisms, each of which is of the form

ϕ(x) = Ax+ c

where A is a rotation and c a constant vector.

Answer. The equation
Lv(dx

2 + dy2) = 0

spells out, after the Leibnitz rule, to be

dxda+ dadx+ dydb+ dbdy = 0.

Expanding,

2dx2ax + dxdy(ay + bx) + dydx(ay + bx) + 2dy2by = 0

Thus ax = 0 and hence a = f(y). Similarly b = g(x), and substituting in
ay + bx = 0 we get

f ′(y) + g′(x) = 0
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This means that f ′ and g′ are constants α,−α so that

f(y) = αy + β, g(x) = −αx+ γ

and

v = α(y
∂

∂x
− x

∂

∂y
) + β

∂

∂x
+ γ

∂

∂y
.

Integrating the vector field means solving

dx

dt
= αy + β,

dy

dt
= −αx+ γ.

Taking one more derivative of the first equation and substituting in the sec-
ond gives

d2x

dt2
= α(−αx+ γ),

which solves as
x = C cosαt+D sinαt+ γ/α

for constants C,D. This gives in the first equation

αy + β = −Cα sinαt+Dα cosαt,

so altogether the general solution of the flow-lines of v is

x = C cosαt+D sinαt+ γ/α,

y = −C sinαt+D cosαt− β/α.

Now let (x(t), y(t)) be the flow-line with (x(0), y(0)) = (x0, y0). Then x0 =
C + γ/α, y0 = D − β/α, so

x(t) = x0 cosαt+ y0 sinαt+
[

γ/α− (γ/α) cosαt+ (β/α) sinαt
]

,

y(t) = −x0 sinαt+ y0 cosαt+
[

−β/α + (γ/α) sinαt+ (β/α) cosαt
]

.

Hence the 1-parameter group of diffeomorphisms (ϕt)t∈R has

ϕt

(

x0

y0

)

= A

(

x0

y0

)

+ c,

where in matrix form

A =

(

cosαt sinαt
− sinαt cosαt

)

, c =

(

γ/α− (γ/α) cosαt+ (β/α) sinαt
−β/α + (γ/α) sinαt+ (β/α) cosαt

)

,

as required.
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