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Week 1

Z-modules are the same thing as abelian groups. The direct sum of R-modules Mi is defined by

⊕

i∈I

Mi :=
{

f : I →
⋃

i∈I

Mi

∣
∣
∣ f(i) ∈Mi and #{i ∈ I : f(i) = 0Mi

} <∞
}

.

The product of modules Mi is given by

∏

i∈I

Mi :=
{

f : I →
⋃

i∈I

Mi

∣
∣
∣ f(i) ∈Mi

}

.

The R-module structure is given by (f + g)(i) = f(i) +Mi
g(i) and (r · f)(i) = r ·Mi

(f(i)).
An inclusion of of R-modules N ⊂ M is called split if there exists another submodule N ′ ⊂ M

such every element of M can be uniquely written as a sum of an element of N and an element of N ′.
Example: the inclusion Z/2 →֒ Z/4 is not split, but the inclusion Z/2 →֒ Z/6 is split. A sequence

0→ A
i→ B

π→ C → 0

is called a short exact sequence if i is injective, π is surjective, and ker(π) = im(i). A short exact
sequence is split if it is isomorphic to one of the form 0→ A→ A⊕ C → C → 0.

Lemma 1. A short exact sequence 0 → A
i→ B

π→ C → 0 is split iff there exists a retraction
r : B → A (a map satisfying ri = 1A) iff there exists a section s : C → B (a map satisfying
πs = 1C).

Proof. Assuming the existence of a retraction r : B → A, we construct a section s : C → B.
Consider the map 1− ir : B → B. This map is zero on i(A) ⊂ B, and therefore descends to a map
s : B/i(A) ∼= C → B. We check that for c ∈ C, we have πs(c) = (c):

πs(c)

pick b ∈ B,
π(b) = c

↓
= π

(
b− ir(b)

)
= π(b)− πir(b)

π◦i=0
↓
= π(b) = c

Assuming the existence of a section s : C → B, we construct a retraction r : B → A. Consider the
map 1− sπ : B → B. The composite of this map with the projection π : B → C is zero. Its image
therefore lands in ker(π) = i(A) ⊂ B. Let r := i−1(1− sπ). We check:

ri(a) = i−1
(
i(a)− sπi(a)

)
πi=0

↓
= i−1i(a) = a.

Finally, assuming the existence of a section s and a retraction r, we can identify B with the direct
sum A⊕ C via the maps B → A⊕ C : b 7→ (r(b), π(b)) and A⊕ C → B : (a, c) 7→ i(a) + s(c).

Given a ring R, the tensor product over R of a right module M with a left module N is denoted
M⊗RN . It is the abelian group generated by symbols m1⊗n1+. . .+mk⊗nk, under the equivalence
relation generated by

(m+m′)⊗ n = m⊗ n+m′ ⊗ n,

m⊗ (n+ n′) = m⊗ n+m⊗ n′,

and mr ⊗ n = m⊗ rn.



If R is non-commutative, then M ⊗R N is just an abelian group. If R is commutative, then it is an
R-module, via r · (∑mi ⊗ ni) :=

∑
rmi ⊗ ni.

Given two left R-modules M and N , we write HomR(M,N) for the set of R-module homomor-
phism from M to N . If R is non-commutative, then HomR(M,N) is just an abelian group. If R is
commutative, then it is an R-module, with (r · f)(m) := r · (f(m)).

There are canonical isomorphisms

(⊕

Ai

)
⊗B ∼=

⊕

(Ai⊗B), Hom
(⊕

Ai, B
) ∼=

∏

Hom(Ai, B), Hom
(
A,

∏

Bi

) ∼=
∏

Hom(A,Bi).

There are also canonical isomorphisms R⊗R N ∼= N , M ⊗R R ∼= M , and HomR(R,N) ∼= N . More
generally, if I < R is a left ideal, then there are canonical isomorphisms

M ⊗R R/I ∼= M/MI, and HomR(R/I,N) ∼= {n ∈ N | rn = 0 ∀r ∈ I}.

We provide a proof for the first isomorphism:

Proof. The isomorphism M ⊗R R/I →M/MI is given by

∑

mi ⊗ [ri] 7→
[∑

mi ⊗ ri
]
.

This map is well defined because (1) (m+m′)⊗ [r] and m⊗ [r] +m′⊗ [r] map to the same element
[(m+m′)r] of M/MI, (2) m⊗([r]+[r′]) and m⊗ [r]+m⊗ [r′] map to the same element [m(r+r′)]of
M/MI, (3) mr1 ⊗ [r] and m ⊗ r1[r] map to the same element [mr1r] of M/MI, and (4) for any
a ∈ I, the elements m⊗ [r] and m⊗ [r + a] map to the same element [mr] = [m(r + a)] of M/MI.
The inverse map is given by

M/MI →M ⊗R R/I : [m] 7→ m⊗ [1].

It is well defined because for m = m′a with a ∈ I, the image of [m] under that map is given by
m′a⊗ [1] = m′ ⊗ a[1] = m′ ⊗ 0, which is zero in M ⊗R R/I.

The composite M/MI → M ⊗R R/I → M/MI is obviously the identity. The other composite
M ⊗R R/I →M/MI →M ⊗R R/I sends

∑
mi ⊗ [ri] to

(∑
miri

)
⊗ [1]. It is the identity since

(∑

miri
)
⊗ [1] =

∑(
miri ⊗ [1]

)
=

∑

mi ⊗ ri[1] =
∑

mi ⊗ [ri].

Exercise 1. Show that if p and q are distinct prime numbers, then Z/p⊗Z Z/q = 0.

Exercise 2. Let R = R[x]/xn. Prove that the obvious inclusion of R-modules R/x →֒ R is not split.
Compute the quotient, and write down the short exact sequence formed by those three modules.

Exercise 3. Let R be ring, let {Ai}i∈I be a collection of right R-modules, and let B be a left
R-module. Show that

(⊕
Ai

)
⊗R B ∼=

⊕
(Ai ⊗R B).

Exercise 4. Let R := Z[x]. Compute HomR

(
R/(2x), R/(4)

)
as an R-module. Show that it is

isomorphic to R/I for some ideal I ⊂ R.

Exercise 5. Let R = {( a b
0 c ) | a, b, c ∈ k} be the ring of upper triangular 2 × 2 matrices with

coefficients in some field k. Show that R is a direct sum of two smaller R-modules: R = P ⊕ Q.
Compute HomR(P,Q) and HomR(Q,P ).

Exercise 6. Let k be a field. Find an exact sequence of k[x]-modules 0→ A→ B → C → 0 such
that the induced sequence A⊗k[x] k[x]/(x)→ B ⊗k[x] k[x]/(x)→ C ⊗k[x] k[x]/(x) is not exact.

Exercise 7. Find an example of a ring R and two modules M and N such that the abelian group
M ⊗R N does not carry the structure of an R-module. Hint: try a 2× 2 matrix algebra.



Week 2

A chain complex of R-modules C• = (Cn, dn)n∈Z is a collection of R-modules Cn and R-module
maps dn : Cn → Cn−1, called ‘differentials’, subject to the axiom dn ◦ dn+1 = 0. This axiom is
sometimes abusively abbreviated d2 = 0. A chain complex is called exact if ker(dn) = im(dn+1).

The homology of a chain complex of R-modules C• = (Cn, dn : Cn → Cn−1)n∈Z is defined by

Hn(C•) :=
Zn

Bn
:=

ker(dn : Cn → Cn−1)

im(dn+1 : Cn+1 → Cn)

Here Zn are called the cycles, and Bn are called the boundaries. If C• is a chain complex in
an arbitrary abelian category (to be defined later), the object Hn(C•) can be defined in purely
categorical terms, as the cokernel of the canonical map Cn+1 → ker(dn : Cn → Cn−1).

A morphism of chain complexes f• : C• → D• is called a quasi-isomorphism if it induces an
isomorphism at the level of homology: Hn(f•) : Hn(C•)

∼=→ Hn(D•), ∀n ∈ Z.

An additive functor between abelian categories (to be defined later) is called exact if it sends
exact sequences to exact sequences, equivalently, if it sends short exact sequences to short exact
sequences. Note that the functor −⊗Z Z/2 is not exact: it sends the exact sequence

0→ Z
·2−→ Z ։ Z/2→ 0

to the sequence 0 → Z/2
0−→ Z/2

≃−→ Z/2 → 0 which is not exact. Similarly, the functor
HomZ(Z/2,−) sends the exact sequence

0→ Z
·2−→ Z ։ Z/2→ 0

to the sequence 0 → 0 → 0 → Z/2 → 0 which is not exact. Finally, the contravariant functor
HomZ(−,Z/2) sends the exact sequence

0→ Z
·2−→ Z ։ Z/2→ 0

to the sequence 0 ← Z/2
0←− Z/2

≃←− Z/2 ← 0 which is not exact. The functors − ⊗Z Z/2 and
HomZ(Z/2,−) and HomZ(−,Z/2) are therefore not exact.

A functor F is right exact if for every short exact sequence 0 → A → B → C → 0, the
sequence F (A) → F (B) → F (C) → 0 is exact. Similarly, a functor F is left exact if whenever
0→ A→ B → C → 0 is exact, then 0→ F (A)→ F (B)→ F (C) is exact.

Lemma 2. Let A be an abelian category, and let M ∈ A be an object. Then the functor HomA(M,−) :
A → AbGrp is left exact.

Proof. Let 0 → A
ι→ B

π→ C → 0 be a short exact sequence in A. We need to show that
0→ Hom(M,A)

ι∗−→ Hom(M,B)
π∗−→ Hom(M,C) is exact.

• ι∗ is injective. Let α ∈ Hom(M,A) be an element that maps to zero in Hom(M,B). Since
ι ◦ α = 0, and ι is a monomorphism (see Lemma 4 below), α = 0. So ι∗ is injective.
• im(ι∗)⊂ ker(π∗). Follows trivially from the fact that π ◦ ι = 0.
• ker(π∗)⊂ im(ι∗). Let β ∈ Hom(M,B) be an element that maps to zero in Hom(M,C). Since

π ◦ β = 0, the map β : M → B factors through ker(π) = A. So we can write β as ι ◦ α for some
α ∈ Hom(M,A). We have β = ι∗(α), and hence β ∈ im(ι∗).

Corollary. Let R be a ring and let M be an R-module. Then the functors

HomR(M,−) : R-Mod→ AbGrp and HomR(−,M) : R-Modop → AbGrp

are left exact.



Lemma 3. The functor −⊗R N is right exact.

Proof. Given a short exact sequence of right R-modules 0 → A
ι→ B

π→ C → 0, we need to show
that A⊗R N → B ⊗R N → C ⊗R N → 0 is exact. The surjectivity of B ⊗R N → C ⊗R N is easy,
so let us focus on the harder argument: given an element

∑
bi ⊗ ni ∈ B ⊗R N that goes to zero in

C ⊗R N , we need to show that it comes from A⊗R N .
Since

∑
π(bi) ⊗ ni = 0 in A ⊗R N , there exist elements c′α, c

′′
α, nα, cβ , n

′
β , n

′′
β , cγ , rγ , nγ such

that
∑

i

π(bi)⊗ ni +
∑

α

(c′α + c′′α)⊗ nα − c′α ⊗ nα − c′′α ⊗ nα

+
∑

β

cβ ⊗ (n′
β + n′′

β)− cβ ⊗ n′
β − cβ ⊗ n′′

β

+
∑

γ

cγrγ ⊗ nγ − cγ ⊗ rγnγ

is zero in the free abelian group on the set of symbols “c ⊗ n”. If we mod out that free abelian
group by the first set of relations (c′ + c′′) ⊗ n = c′ ⊗ n + c′′ ⊗ n, then we get the abelian group
⊕

n∈N C. So, another way of saying that
∑

π(bi)⊗ ni is zero in A⊗R N is to say that there exist
elements cβ , n

′
β , n

′′
β , cγ , rγ , nγ such that

∑

i

π(bi)⊗ ni +
∑

β

cβ ⊗ (n′
β + n′′

β)− cβ ⊗ n′
β − cβ ⊗ n′′

β +
∑

γ

cγrγ ⊗ nγ − cγ ⊗ rγnγ = 0 in
⊕

n∈N

C,

where “c⊗ n” now stands for the element c put in the n-th copy of C.
Pick preimages bβ , bγ ∈ B of cβ , cγ ∈ C, and consider the element

y :=
∑

i

bi ⊗ ni +
∑

β

bβ ⊗ (n′
β + n′′

β)− bβ ⊗ n′
β − bβ ⊗ n′′

β +
∑

γ

bγrγ ⊗ nγ − bγ ⊗ rγnγ ∈
⊕

n∈N

B.

This element goes to 0 in
⊕

n∈N C and therefore comes from some x ∈⊕

n∈N A.
Let [x] denote the image of x in A ⊗R N and let [y] denote the image of y in B ⊗R N . Since

x 7→ y, it follows that [x] 7→ [y]. We are done since [y] =
∑

i bi ⊗ ni in B ⊗R N .

Week 3

A terminal object is an object that admits exactly one morphism to it from any other object.
An initial object is an object that admits exactly one morphism from it to any other object. A zero
object is an object that admits exactly one morphism to it from any other object and exactly one
morphism from it to any other object, i.e., is both initial and terminal.

A monomorphism is a morphism f that satisfies (f ◦ g1 = f ◦ g2) ⇒ (g1 = g2). Equivalently,
it is a morphism f : X → Y with the property that whenever two morphisms g1, g2 : Z → X are
distinct, they remain distinct after composing them with f . Dually, an epimorphism is a map f
that satisfies (g1 ◦ f = g2 ◦ f)⇒ (g1 = g2).

The direct sum of two objects X1 and X2 is an object Z equipped with maps i1 : X1 → Z,
i2 : X2 → Z, p1 : Z → X1, p2 : Z → X2 satisfying p1 ◦ i1 = id, p2 ◦ i2 = id, p1 ◦ i2 = 0, p2 ◦ i1 = 0,
and i1 ◦ p1 + i2 ◦ p2 = id.

An pre-additive category is a category such that all the hom-sets are equipped with the structure
of abelian groups and such that composition Hom(x, y) × Hom(y, z) → Hom(x, z) is bilinear. An
additive category is a category which is preadditive, admits a zero object, and admits all direct
sums.

The kernel of a map f : X → Y is a morphism i : K → X which is universal w.r.t the property
that f ◦ i = 0. This means the following: it’s an object K along with a morphism i : K → X



satisfying f ◦ i = 0, such that for every object K̃ and every morphism ĩ : K̃ → X satisfying f ◦ ĩ = 0,
there exists a unique morphism g : K̃ → K such that ĩ = i ◦ g.

Dually, the cokernel of a map f : X → Y is a morhpism q : Y → C which is universal w.r.t the
property that q ◦ f = 0.

An additive category is called abelian if for every monomorphism f : A  B, the pair (A, f) is
a kernel of the morphism B → coker(f), and for every epimorphism f : A ։ B the pair (B, f) is a
cokernel of the morphism ker(f)→ A.

A sequence 0→ A
f→ B

g→ C → 0 is exact iff (A, f) is a kernel of g and (C, g) is a cokernel of f .

The homology of a chain complex . . . Cn+1
dn+1−→ Cn

dn−→ Cn−1 . . . is the cokernel of the map
Cn+1 → ker(dn).

Lemma 4. Kernels are monomorphisms; cokernels are epimorphisms.

Proof. Let f : A→ B be a morphism. Consider two morphisms a, b : X → ker(f) with the property
that ιa = ιb:

X
a−→−→
b

ker(f)
ι→ A

f→ B

Since fιa = 0, by the universal property of ker(f), there exists a unique morphism X → ker(f)
whose composition with ι yields ιa. Both a and b satisfy that property. So they’re equal.

Lemma 5 (exercise). A morphism f is an epimorphism if and only if coker(f) = 0.

A colimit (also called direct limit) of a sequence of morphisms X1 → X2 → X3 → . . . is an
object Z along with morphisms Xi → Z such that

all little triangles commute

X1
// X2

// X3
// X4

// . . .

Z
  

···

❆❆❆❆❆❆❆❆
((

PPPPPPPPPPPPPPP**

❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯++

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳,,

❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨

and such that for every other diagram

X1
// X2

// X3
// X4

// . . .

Z̃
��

···

""&&((**

all of whose little triangles commute

there exists a unique morphism Z → Z̃ such that all the triangles in this big diagram commute:

X1
// X2

// X3
// X4

// . . .

Z
  

···

❆❆❆❆❆❆❆❆
((

PPPPPPPPPPPPPPP**

❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯++

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳,,

❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨❨

Z̃
��

···

  %%(())
��

The colimit can be denoted colimXi or lim−→Xi. Quite often ‘colimit’ means the same thing as ‘union’.
The dual notion is called a limit. It is denoted limXi or lim←−Xi.



An R-module is called projective if it is a direct summand of a free module. An object P of an
abelian category is called projective if for every epimorphism A→ B and every morphism P → B,
there exists a morphism P → A such that the triangle commutes:

A

∀
����

P
∀ //

∃

??⑦⑦⑦⑦⑦⑦⑦⑦
B

Exercise 8. Let k be a field, and let C be the abelian category of k-vector spaces. Let D be an
arbitrary abelian category. Prove that every additive functor C → D is exact.

Exercise 9. Let R and S be rings, let C := R-Mod and D := S-Mod be the associated abelian
categories of modules, and let F : C → D be an additive functor.

Assume that F sends short exact sequences to short exact sequences. Prove that it sends exact
sequences (or any length) to exact sequences.

Exercise 10. Let R be a ring. Prove that an R-module P is projective iff every surjective map
A→ P admits a section.

Exercise 11. Let R := Z[
√
−5]. Prove that the ideal generated by 2 and 1+

√
−5 is a projective R-

module which is not free. Hint: show that the map
(

2 1−
√

−5

1+
√

−5 2

)
: R⊕2 →M⊕2 is an isomorphism.

Exercise 12. Let R be a ring. Prove that for every sequence of R-modules (Mi)n∈Z, there exists
a chain complex of free modules C• such that Hi(C•) ∼= Mi for all i ∈ Z.

Exercise 13. Let A be an arbitrary abelian category, and let Ch(A) be the category of chain
complexes of objects of A. Given a morphism f• : C• → D• in Ch(A), prove that the kernel of f•
is the chain complex

(
. . .→ ker(fn)→ ker(fn−1)→ . . .

)
.

The next exercise is a long and painful one which I don’t expect you (or want you) to finish. But
I do want you to start it. Write down what you think is approximately 50% of the proof, and then
write “I give up” (or, if you don’t want to give up, you may hand in a complete answer):

Exercise 14. Prove that a short exact sequence of chain complexes (of R-modules)

�� �� ��
0 // An+1

//

��

Bn+1
//

��

Cn+1
//

��

0

0 // An
//

��

Bn
//

��

Cn
//

��

0

0 // An−1
//

��

Bn−1
//

��

Cn−1
//

��

0

0 // An−2
//

��

Bn−2
//

��

Cn−2
//

��

0

induces a long exact sequence in homology

. . .→ Hn+1(C•)→ Hn(A•)→ Hn(B•)→ Hn(C•)→ Hn−1(A•)→ . . .

[For the definition of the so-called ‘connecting homomorphism’ Hn+1(C•)→ Hn(A•), you may have
a look at e.g. https://ncatlab.org/nlab/show/connecting+homomorphism]

Week 4

Let M be a right R-module and N a left R-module. Then:

TorRi (M,N) := Hi(P• ⊗R N) = Hi(M ⊗R Q•)



where P• is a projective resolution of M , or Q• is a projective resolution of N . Implicit in the above
definition is the fact that TorRi (M,N) doesn’t depend on the choice of projective resolution, and
doesn’t depend on whether one resolves M or N .

Let M and N be R-modules (either both right modules or both left modules). Then:

ExtiR(M,N) := Hi(HomR(P•, N)) = Hi(HomR(M, I•)).

Here, P• is a projective resolution of M and I• is an injective resolution of N (injective objects
are defined below). Once again, the choice of resolution doesn’t matter, neither does the choice of
which of the two modules one decides to resolve.

If R = Z, then every module admits a resolution of length 1. This implies that TorZi and ExtiZ
vanishes as soon as i > 1. This property is called ‘Z has cohomological dimension one’.

Let A and B be abelian categories. Assume that A has enough projectives. Let F : A → B be
an additive functor (often assumed to be right exact). The nth left derived functor of F , denoted
LnF : A→ B is defined by X 7→ Hn(F (P•)), where P• → X is a projective resolution.

Assume now that A has enough injectives and that F : A → B is an additive functor (often
assumed to be left exact). The nth right derived functor of F , denoted RnF : A→ B is defined by
X 7→ Hn(F (I•)), where X → I• is an injective resolution.

Lemma 6. If F is right exact, then L0F = F . (If F is left exact, then R0F = F .)

Proof. Let P• → M be a projective resolution, so that P1
d→ P0

ε→ M → 0 is exact. By definition,
L0F (M) = coker(F (d)). Consider the short exact sequence 0 → K → P0 → M → 0, where
K := ker(ε). The comparison map P1 → K is an epimorphism by the exactness of P• →M . Since
right exact functors send epimorphisms to epimorphisms, the map F (P1) → F (K) is then also an
epimorphism.

By the right exactness of F , the sequence F (K) → F (P0) → F (M) → 0 is exact. So F (M) =
ker(F (K) → F (P0)) = ker(F (P1) → F (P0)) = L0F (M). The middle equality holds true because
composing with an epimorphism (namely with the map F (P1)→ F (K)) doesn’t change cokernels;
see the next lemma.

Lemma 7 (exercise). Given composable morphisms A
f
։ B

g→ C
h→ D, the morphism h is a

cokernel of g if and only if it is a cokernel of g ◦ f .

A morphism of chain complexes f• : C• → D• induces a corresponding morphism at the level
of cohomology groups Hn(f•) : Hn(C•) → Hn(D•). Two chain maps f•, g• : C• → D• are called
chain homotopic if there exists a degree −1 map h : C• → D• satisfying hd+ dh = f − g.

There are two ways of making the operation “take a projective resolution” into a functor:

(1) Take P0 to be the free R-module on the underlying set of M . Take P1 to be the free R-module
on the underlying set of ker(P0 → M). Take P2 to be the free R-module on the underlying set of
ker(P1 → P0). Etc.

(2) View the operation “take a projective resolution” as a functor from our abelian category A to
its derived category D(A).

Definition: Let A be an abelian category. Its derived category D(A) has:
• Object = positively graded chain complexes of projectives of A
• Morphisms = chain maps modulo chain homotopy.

The notion of chain homotopy is made so that whenever f• : C• → D• and g• : C• → D• are chain
homotopic maps, then H∗(f•) = H∗(g•) : H∗(C•)→ H∗(D•).



Here’s a way of defining the nth derived functor of an additive functor F : A → B:

LnF : A
take projective

resolution−−−−−−−−−−→ D(A) apply F−−−−−→
(

Ch(B); chain maps modulo

chain homotopy

)
Hn−−→ B

The total derived functor of F , or simply “the derived functor of F” is the functor

LF : A
take projective

resolution−−−−−−−−−−→ D(A) apply F−−−−−→
(

Ch(B); chain maps modulo

chain homotopy

) take projective

resolution−−−−−−−−−−→ D(B).

Here, a projective resolution of a chain complex C• is the data of a chain complex of projectives P•

together with a map of chain complexes P• → C• which is a quasi-isomorphism.

Week 5 Recall that a module (or object of some arbitrary abelian category) P is projective if
for every solid arrow diagram there exists a dotted arrow making the diagram commute:

P

��❅
❅❅

❅❅
❅❅

❅

∃

��
B // // C

In the same vein, a module (or object of some arbitrary abelian category) I is called injective if for
every solid arrow diagram there exists a dotted arrow making the diagram commute:

I __
∃

==

③③
③③
③③
③③

A // // B

A module P is projective iff HomR(P,−) is exact. A module I is injective iff HomR(−, I) is exact.
A module F is flat if −⊗R F is exact. Every projective module is flat. Indeed, if M = M ′ ⊕M ′′,
then we have (M is flat) ⇔ (M ′ is flat and M ′′ is flat). Starting from the obvious fact that free
modules are flat, we conclude that every projective module is flat.

Example: Q is a flat Z-module. That’s because Q = colim(Z
·2−→ Z

·3−→ Z
·4−→ Z

·5−→ . . .) and for
every abelian group A we have

Q⊗Z A = colim(A
·2−→ A

·3−→ A
·4−→ A

·5−→ . . .).

In order to check that Q is flat, one needs to check that an injective map f : A → B remains
injective after applying the functor Q⊗Z −. This is a diagram chase in the diagram:

A

f

��

·2 // A

f

��

·3 // A

f

��

·4 // . . .

B
·2 // B

·3 // B
·4 // . . .

Lemma 8. A short exact sequence of chain complexes 0 → A• → B• → C• → 0 (which, by
definition, means that for each n the sequence 0 → An → Bn → Cn → 0 is exact) induces a long
exact sequence in homology. See p. 117 of Hatcher’s book for a proof.

A bigraded chain complex C•• is a sequence of abelian groups Cp,q (or objects of some abelian
category) together with maps dh : Cp,q → Cp−1,q and dv : Cp,q → Cp,q−1 satisfying dhdh = 0,
dvdv = 0, and dhdv = dvdh. The total chain complex Tot

(
C••

)
is defined by

[
Tot

(
C••

)]

n
=

⊕

p+q=n

Cp,q



The differential dTot :
[
Tot

(
C••

)]

n
→

[
Tot

(
C••

)]

n−1
is the sum of the maps dh : Cp,q → Cp−1,q

and (−1)p · dv : Cp,q → Cp,q−1 over all p, q such that p+ q = n. There’s also a variant of Tot where
one uses direct products instead of direct sums

[
Tot

∏(
C••

)]

n
=

∏

p+q=n

Cp,q

Lemma 9. Let C•• be a double complex such that for every n there exists only finitely many pairs
(p, q), p+ q = n, such that Cp,q 6= 0. Then we have

(

C•• has exact rows
)

⇒
(

Tot(C••) is exact
)

More generally, if C•• is a double complex such that for every n the set {p ∈ Z |Cp,n−p 6= 0} is
bounded below, then

(

C•• has exact rows
)

⇒
(

Tot
∏

(C••) is exact
)

TorRi (M,N) and ExtiR(M,N) are independent of the choice of resolution. They can be computed
by resolving either M or N .

Let M be a right R-module and N a left R-module, let P• be a projective resolution of M and
Q• a projective resolution of N . Then we have quasi-isomorphisms

P• ⊗R N ← Tot(P• ⊗R Q•) → M ⊗R Q•

inducing isomorphisms

Hi(P• ⊗R N) ∼= Hi(Tot(P• ⊗R Q•)) ∼= Hi(M ⊗R Q•).

The isomorphism Hi(P•⊗RN)
∼=← Hi(Tot(P•⊗RQ•)) is the connecting homomorphism in the LES

associated to the short exact sequence

0→ P• ⊗R N → Tot
(
P• ⊗R Q• → P• ⊗R N

)
→ Tot

(
P• ⊗R Q•

)
→ 0.

The fact that the middle term is acyclic (the words ‘acyclic’ and ‘exact’ are synonyms) follows from
Lemma 9 below.

Let now M and N be R-modules (either both right modules or both left modules). Let P• be a
projective resolution of M and I• an injective resolution of N . Then we have quasi-isomorphisms

HomR(P•, N) → (Tot(HomR(P•, I
•)) ← HomR(M, I•)

and ExtiR(M,N) can be computed in any one of the following ways:

Hi(HomR(P•, N)) ∼= Hi(Tot(HomR(P•, I
•))) ∼= Hi(HomR(M, I•)).

If instead one takes a projective resolution Q• of N , then one has yet another chain complex
that computes Ext∗R(M,N), namely Tot

∏

(HomR(P•, Q•)).

Exercise 15. Compute Ext∗Z(Z/2Z,Z/2Z), Ext
∗
Z(Z,Z/2Z), and Ext∗Z(Z/2Z,Z) first using projective

resolutions, and then using injective resolutions.

Exercise 16. Let k be a field. Compute TorR∗ (k, k) and Ext∗R(k, k) for R = k[x], R = k[x, y],
R = k[x]/xn, R = k[x, y]/(xn, ym), R = k[x, y]/(x2, y2, xy), R = k[x, y]/(x3 − y2).

Exercise 17. Compute Ext∗Z(Z/2Z,Z/2Z) using the formula H∗(Tot(HomR(P•, I
•))).

Exercise 18. Compute TorC[x]/x
2

∗ (C,C) using the formula H∗(Tot(P• ⊗R Q•)).



Exercise 19. Write down an example of a bigraded chain complex C•• which fails the condition
“for every n there exists only finitely many pairs (p, q) such that p+ q = n and Cp,q 6= 0”, and for
which the implication

(

C•• has exact rows
)

⇒
(

Tot(C••) is exact
)

fails. In other words, you must find a bigraded chain complex C•• which has has exact rows, but
such that Tot(C••) is not exact.

Exercise 20. Prove that an abelian group A is flat as a Z-module if and only if it is torsion-free.
Hint: Write A as a colimit of free abelian groups.

Exercise 21. Prove that an abelian group A is injective as a Z-module if and only if it is divisible
(here, divisible means ∀a ∈ A, ∀n ∈ N, ∃x ∈ A s.t.nx = a).
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The pullback of a diagram of modules A
f−→ C

g←− B is the set {(a, b) ∈ A⊕B : f(a) = g(b)}. It
is also the limit of the diagram A→ C ← B. The pushout of a diagram of modules A

f←− C
g−→ B is

the quotient A⊕B/{(f(c),−g(c)) : c ∈ C}. It is also the colimit of the diagram A← C → B.
A diagram of R-modules indexed by a poset P is just a functor P → R-Mod. Concretely, this is

the data of R-modules Mα indexed by P , and maps fαβ : Mα → Mβ for all α < β ∈ P , satisfying
fβγfαβ = fαγ .

The limit of a a diagram P → R-Mod (where P is a poset) can be described concretely as
{
(mα) ∈

∏

α∈P Mα : fαβ(mα) = mβ , ∀α < β ∈ P
}
. The colimit of a a diagram P → R-Mod is

given by
⊕

α∈P Mα

/
Span{m−fαβ(m) : m ∈Mα}. Limits and colimits can alternatively be defined

by means of a universal property.
A poset is called directed if for every x, y ∈ P , there exists z ∈ P such that z ≥ x and z ≥ y.

If P is a directed poset, then every element of colimα∈PMα is represented by some element m of
some Mα. Moreover, if P is a direct poset, then an element m ∈Mα represents the zero element in
colimα∈PMα iff there exists some β ≥ α in P such that m becomes zero in Mβ .

The latter fails miserably for e.g. pushout(Z/2← Z→ Z/3).

Theorem (Baer’s criterion)
An R-module E is injective if and only if every left ideal I < R and any map I → E, the

extension problem

E

I //

OO

R

__

admits a solution.

See e.g. https://ncatlab.org/nlab/show/Baer’s+criterion for a proof.
Corollary of Baer’s criterion: if R is a PID, then a module M is injective iff it is divisible, i.e. iff

for every x ∈M and every non-zero r ∈ R there exists y ∈M such that ry = x.
An abelian category is said to have enough projectives if for every object X, there exists a

projective object P and an epimorphism P → X. Dually, an abelian category is said to have
enough injectives if for every object X, there exists an injective object I and a monomorphism
X → I.

It is easy to see that for any ring R, the category of R-modules has enough projectives: take P
to be free R module on the underlying set of X (any generating set would also do).

Showing the R-mod has enough injectives is much harder. Given an R-module M , let S denote
the set of all pairs (I, f), where I is an ideal of R, and f : I →M is an R-module homomorphism.



We write M ′ for the following pushout:

M // M ′

⊕

(I,f)∈S

I //

⊕

f

OO

⊕

(I,f)∈S

R

OO

Write M0 := M and Mn+1 := (Mn)
′. If every ideal is finitely generated, then M∞ := colim(M0 →

M1 → M2 → . . .) is an injective module. It obviousely contains M as a submodule. To show that
M∞ is injective, we use Baer’s criterion. Using the fact that every ideal is finitely generated, every
map f : I → M∞ factors through some finite stage of the colimit, let’s say f : I → Mn. The

extension problem will then admit a solution at the next stage:

Mn+1

I //

f

OO

R

∃
bb

. Here, the map

R → Mn+1 comes from

Mn
// Mn+1

⊕

(I,f)

I //

⊕

f

OO

⊕

(I,f)

R

OO

I //

OO

R

OO

, where the bottom vertical maps I →
⊕

(I,f) I and

R→
⊕

(I,f) R are the inclusions of the summands indexed by (I, f).
For general rings, i.e. without the condition that every ideal is finitely generated, then a similar

construction can be made to work, provided one replaces colimn∈NMn by a colimit indexed over all
ordinals which are small than a suitably chosen cardinal. Let λ be the smallest cardinal which is
bigger than the cardinality of R. For every ordinal α with |α| < λ, define inductively M0 := M ,
Mα := (Mβ)

′ if α = β + 1, and Mα := colimβ<αMβ if α is a limit ordinal. Then colim|α|<λMα is
an injective that contains M as a submodule.
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Recall that a ring is called Noetherian if every ideal is finitely generated. Using Bear’s criterion,
one can prove:

Lemma 10 (exercise). Let R be a Noetherian ring, and let {Ii}i∈I be a collection of injective
modules. Then

⊕

i∈I Ii is injective.

In the absence of the Noetherian condition, one can still show that
∏

i∈I Ii is injective.

Proposition. A Z-module is injective if and only if it is a direct sum of the following groups: Q,
and Z[ 1p ]/Z, for p a prime.

Proof. Let I be an injective Z-module. Consider the collection of submodules M equipped with
a direct sum decomposition into pieces isomorphic to Q or Z[ 1p ]/Z. This is a poset under inclusion
respecting the direct sum decompositions. By an application of Zorn’s lemma, this poset admits a
maximal element. If the maximal element is I, we’re done.

Assume by contradiction that the maximal element M is not I. Since M is injective, the short
exact sequence 0 → M → I → I/M → 0 splits. So it’s enough to find a submodule of N := I/M



which is isomorphic to either Q or Z[ 1p ]/Z. Note that N is injective as it’s a direct summand of an
injective module.

Pick x ∈ N , non-zero, and let C0 be the cyclic subgroup generated by x. Let C ⊂ C0 be a
subgroup isomorphic to Z/pZ or Z. Let D := Z[ 1p ]/pZ

∼= Z[ 1p ]/Z if C ∼= Z/pZ, and D := Q if
C ∼= Z. Since N is injective, the map C → N extends to a map D → N .

It remains to show that the map D → N is injective. Indeed, for every non-zero element d ∈ D,
there exists n ∈ N such that nd ∈ C. The map D → N is injective when restricted to C. So it’s
injective on all of D. �

Similarly, if k is an algebraically closed field, a k[x]-module is injective if and only if it is a direct
sum of copies of the fraction field k(x), and of the modules k[x̃, x̃−1]/k[x̃] for x̃ := x− a and a ∈ k.

Given two objects A and C in some abelian category, there is a canonical bijection between the
abelian group Ext1(C,A) and the set of isomorphism classes of extension 0 → A → B → C → 0.
Indeed, this is where the notation “Ext” comes from. Here, two extensions (= short exact sequences)
are called isomorphic if they fit into a commutative diagram

0 // A

idA

��

// B

≃

��

// C

idC

��

// 0

0 // A // B′ // C // 0

The sum operation on the set of isomorphism classes of extensions of A by B is called the Baer
sum. Given two extensions

0→ B → X1
π1−→ A→ 0 and 0→ B → X2

π2−→ A→ 0

let X12 be the pullback (or fibre product) X1 ×A X2 := {(x1, x2) ∈ X1 × X2 : π1(x1) = π2(x2)}.
There’s two copies of B inside X12, namely {(b, 0)} and {(0, b)}. The Baer sum is what one gets by
identifying those two copies of B:

X1 ⊞X2 := X12/(b, 0) ∼ (0, b) = X12/{(b,−b) : b ∈ B}

and it again fits into a short exact sequence

0→ B → X1 ⊞X2 → A→ 0

This operation is obviously commutative. To see that ⊞ is associative, one notes that both (X1 ⊞

X2)⊞X3 and X1⊞(X2⊞X3) can be identified with (X1×AX2×AX3)/(b, 0, 0) ∼ (0, b, 0) ∼ (0, 0, b).
The main steps of the proof of the bijection

{
Isomorphism classes of
extensions of A by B

}

∼= Ext1(A,B)

are as follows:
◮ Given an extension 0 → A → B → C → 0 and a resolution P• → C, construct a map of chain
complexes from (P• → C → 0) to (0→ A→ B → C → 0).
◮ Use this to define an element of Ext1(C,A).
◮ Show that the resulting element of Ext1(C,A) does not depend on the choice of map from
(P• → C → 0) to (0→ A→ B → C → 0).
◮ Given an element of Ext1(C,A) represented by a map P1 → A for some resolution P• → C, define
the group B := (P0 ⊕A)/P ′

1, where P ′
1 is the quotient of P1 by the image of d2 : P2 → P1.

◮ Show that B fits into a short exact sequence 0→ A→ B → C → 0.
◮ Show that this short exact sequence does not depend on the choice of resolution P• → C.
◮ Finally, show that the above constructions are each other’s inverses.
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Recall that given projective resolutions A← P• and B ← Q•, the cochain complex

Hom(C•, D•) := Tot
∏

(

Hom(P•, Q•)
)

computes Ext(A,B). (By this we mean that the nth cohomology group of this complex is canonically
isomorphic to Ext(A,B).)

Using this fact, composition of homomorphisms ◦ : Hom(A,B) ⊗ Hom(B,C) → Hom(A,C)
induces a well-defined map Exti(A,B)⊗Extj(B,C)→ Exti+j(A,C). In particular, this equips the
graded abelian group

Ext∗(A,A) :=

∞⊕

i=0

Exti(A,A)

with the structure of a ring.
Upon identifying cycles in Hom(C•, D•) with chain maps C• → D•, one get the following

convenient description of Ext:

Hn
(

Hom(C•, D•)
)

=
degree (−n) chain maps C• → D•

chain maps which are chain-homotopic to zero

Here are some examples of Ext-ring computations:
• Extk[x](k, k) = k[y]/y2, with y in degree 1.
• Extk[x]/(x2)(k, k) = k[y], with y in degree 1.
• Extk[x]/(x3)(k, k) = k[y, z]/(y2), with y in degree 1 and z in degree 2.

Let’s work out the last example in detail. Let R := k[x]/(x3) and let P• :=
(

R
x←− R

x2

←− R
x←− R . . .

)

be a resolution of k. Then the generator y of Ext1(k, k) is given by

y :=

0 Roo R

1

��

xoo R

x

��

x2

oo R

1

��

xoo R

x

��

x2

oo R

1

��

xoo

0 Roo R
xoo R

x2

oo R
xoo R

x2

oo

· · ·

· · ·

and the generator z of Ext2(k, k) is given by

z :=

0 Roo R
xoo R

1

��

x2

oo R

1

��

xoo R

1

��

x2

oo R

1

��

xoo

0 Roo R
xoo R

x2

oo R
xoo

· · ·

· · ·

To check that y2 = 0 in the ring Ext∗(k, k), one composes the chain maps as follows:

0 Roo R

1

��

xoo R

x

��

x2

oo R

1

��

xoo R

x

��

x2

oo R

1

��

xoo

0 Roo R

1

��

xoo R

x

��

x2

oo R

1

��

xoo R

x

��

x2

oo

0 Roo R
xoo R

x2

oo R
xoo

· · ·

· · ·

· · ·



This gives x·z, which is zero in the Ext ring (because Ext2(k, k) = k as an R-module). Alternatively,
one can construct an explicit null-homotopy of the above composite:

0 Roo R

0 ��❅
❅❅

❅❅
❅❅

❅
xoo R

1 ��❅
❅❅

❅❅
❅❅

❅

x

��

x2

oo R

0 ��❅
❅❅

❅❅
❅❅

❅

x

��

xoo R

1 ��❅
❅❅

❅❅
❅❅

❅

x

��

x2

oo R

x

��

xoo

0 Roo R
x

oo R
x2

oo R
x

oo

· · ·

· · ·

Exercise 22. Let k be a field, and let R := k[x, y]. Write k for the R-module R/(x, y).
Let n1 > n2 > . . . > ns = 0, and 0 = m1 < m2 < . . . < ms be integers.
Compute TorR∗ (R/(xn1ym1 , xn2ym2 , . . . , xnsyms), k)
A projective resolution of R/(xn1ym1 , xn2ym2 , . . . , xnsyms) is given by

Rs−1













ym2−m1 0 ... 0

xn1−n2 ym3−m2 ... 0

0 xn2−n3 ym4−m3 ...

...
. ..













−−−−−−−−−−−−−−−−−−−−−−−→ Rs







xn1ym1

...
xnsyms







−−−−−−−−→ R

After tensoring by k, the differentials become zero and we get Tor0 = k, Tor1 = ks, Tor2 = ks−1.
Let R = k[x, y] be as above, and let a > n > 0 be integers.
Compute TorR∗ (R/(xn, yn), R/(xa, xy, ya)).

R
( yn −xn )−−−−−−→ R2

(
xn

yn

)

−−−−→ R is a projective resolution of R/(xn, yn). After tensoring with R/(xa, xy, ya),
this becomes

R/(xa, xy, ya)
d2=( yn −xn )−−−−−−−−−→

[
R/(xa, xy, ya)

]2
d1=

(
xn

yn

)

−−−−−−→ R/(xa, xy, ya).

The homology in degree zero is Tor0 = coker(d1) = R/(xn, xy, yn). The kernel of d1 has a k-
basis given by {xa−n, xa−n+1, . . . , xa−1, y, y2, . . . , ya−1} in the first copy of R/(xa, xy, ya) and by
{x, x2, . . . , xa−1, ya−n, ya−n+1, . . . , ya−1} in second first copy of R/(xa, xy, ya). Let us write

xa−n
1 , xa−n+1

1 , . . . , xa−1
1 , y1, y

2
1 , . . . , y

a−1
1 and x2, x

2
2, . . . , x

a−1
2 , ya−n

2 , ya−n+1
2 , . . . , ya−1

2

to distinguish them. The elements in the image of d2 are yn1 − xn
2 , y

n+1
1 , yn+2

1 , . . ., ya−1
1 , xn+1

2 ,
xn+2
2 , . . ., xa−1

2 . So a k-basis of Tor1 = ker(d1)/im(d2) is given by

xa−n
1 , xa−n+1

1 , . . . , xa−1
1 , y1, y

2
1 , . . . , y

n
1 = xn

2 , x
n−1
2 , . . . , x3

2, x
2
2, x2, y

a−n
2 , ya−n+1

2 , . . . , ya−1
2

which decomposes as an R-module as

xa−n
1 , xa−n+1

1 , . . . , xa−1
1

︸ ︷︷ ︸

∼= R/(y, xn)

, y1, y
2
1 , . . . , y

n
1 = xn

2 , x
n−1
2 , . . . , x3

2, x
2
2, x2

︸ ︷︷ ︸

∼= (xn−1,yn−1)
(xn,yn)

, ya−n
2 , ya−n+1

2 , . . . , ya−1
2

︸ ︷︷ ︸

∼= R/(yn, x)

Finally, Tor2 = ker(d2) has a k-basis given by xa−n, xa−n+1, . . . , xa−1 and ya−n, ya−n+1, . . . , ya−1,
and is isomorphic to R/(y, xn)⊕R/(yn, x).

Exercise 23. Consider the abelian category whose objects are diagrams (M1
f1←− M2

f2←− M3
f3←−

. . .) of abelian groups indexed by N, and whose morphisms are natural transformations between such

diagrams. Show, that the functor which sends an object (M1
f1←−M2

f2←−M3
f3←− . . .) to its inverse

limit lim←−Mi is not right exact.

Hint: Construct a suitable morphism between the object (Z
id← Z

id← Z . . .) and the object
(Z/2Z և Z/4Z և Z/8Z . . .), and analyse its properties.



In order to show that a functor F is not right exact, it suffices to exhibit an epimorphism f such
that F (f) is not an epimorphism.
We consider the morphism

Z
id←− Z

id←− Z
id←− Z

id←− . . .

։ ։ ։ ։

Z/2Z և Z/4Z և Z/8Z և Z/16Z և . . .

Its image under the functor lim←− is the morphism of abelian groups Z → Z2 (the inclusion of the

integers into the 2-adic integers). The latter is not be an epimorphism.
Consider the derived functors limi := Ri(lim←−) of the inverse limit functor

lim←− : (M1
f1←−M2

f2←−M3
f3←− . . .) 7→ (lim←−Mi).

[You may assume the knowledge that the inverse limit functor is left exact]
Assuming the knowledge that the functors limi for i ≥ 1 yield zero when evaluated on the object

(Z
id← Z

id← Z . . .), compute the value of

lim1
(
Z

·2←− Z
·2←− Z

·2←− . . .
)
.

The short exact sequence

0→ (Z
·2← Z

·2← Z
·2← . . .)→ (Z

id← Z
id← Z . . .)→ (Z/2Z և Z/4Z և Z/8Z և . . .)→ 0

yields a long exact sequence of derived functors

0→ lim←−(Z
·2← Z

·2← Z
·2← . . .)→ lim←−(Z

id← Z
id← Z . . .)

→ lim←−(Z/2Z և Z/4Z և Z/8Z և . . .)

→ lim1(Z
·2← Z

·2← Z
·2← . . .)→ 0

which reads
0→ 0→ Z→ Z2 → ?→ 0

It follows that lim1(Z
·2← Z

·2← Z
·2← . . .) = Z2/Z.

Exercise 24. Given a possibly non-abelian group G, the nth homology group of G with coefficients
in an abelian group A is defined to be the nth Tor-group TorZ[G]

n (Z, A). (Here, Z[G] denotes the
group algebra of G i.e., the free abelian group on the elements of G, equipped with the ring structure
inherited from the multiplication in G).

Here, both Z and A are equipped with the action of Z[G] in which all the generators of G act
trivially.

Let G be the cyclic group of order four, so that Z[G] = Z[x]/(x4 − 1). Compute the group
homology Hi(G,Z) for all i.

The group algebra Z[G] is the same as the ring Z[x]/(x4 − 1). So, by definition, Hi(G,Z) =
TorRi (Z,Z).
A free resolution of Z is given by

. . . R
1 7→1+x+x2+x3

−−−−−−−−−−→ R
1 7→1−x−−−−−→ R

1 7→1+x+x2+x3

−−−−−−−−−−→ R
1 7→1−x−−−−−→ R→ Z

Removing the last term and tensoring by Z, we get

. . .Z
1+x+x2+x3

−−−−−−−−→ Z
1−x−−−→ Z

1+x+x2+x3

−−−−−−−−→ Z
1−x−−−→ Z→ 0



which is
. . .Z

4−→ Z
0−→ Z

4−→ Z
0−→ Z→ 0

So the homology is Z in degree zero, Z/4 is odd degrees, and zero otherwise.

Exercise 25. Compute the structure of the graded ring Ext∗Z(Z/2,Z/2).
Compute the structure of the graded ring Ext∗Z/8(Z/4,Z/4).


