C2.1a Lie algebras

Mathematical Institute, University of Oxford

Michaelmas Term 2018

Problem Sheet 0 (not for handing in)

1. Let V be a finite dimensional vector space and let $A \subset \operatorname{End}(V)$ denote a subspace consisting of commuting diagonalisable endomorphisms. Show that we may find a basis of V in which each element of A is represented by a diagonal matrix.
2. Let k be a field and let V be a k -vector space. If $x \in \operatorname{End}(V)$, and $V=\bigoplus_{\lambda} V_{\lambda}$ is the decomposition of V into a direct sum of generalised eigenspaces of x, we define $x_{s} \in \operatorname{End}(V)$ to be the linear map given by $x_{s}(v)=\lambda . v$ for $v \in V_{\lambda}$. It is called the semisimple part of x. Clearly it is diagonalisable.
i) Show that the element $x_{n}=x-x_{s}$ is nilpotent, and check that x_{s} and x_{n} commute.
ii) Show that if $x, y \in \operatorname{End}(V)$ commute, and y is nilpotent, then the generalised eigenspaces of x and $x+y$ coincide.
3. Let k be an infinite field (not necessarily algebraically closed or of characteristic zero), and suppose that V is a finite dimensional k -vector space. If $U_{1}, U_{2}, \ldots, U_{r}$ are proper subspaces of V, show that $V \neq U_{1} \cup U_{2} \cup \ldots \cup U_{r}$.

There is an algebraic way to think about the idea of "infinitesimals". The next two questions of the sheet explore this idea a little. Let k be a field and let $D_{\mathrm{k}}=\mathrm{k}[t] /\left(t^{2}\right)$. Write ε for the image of t in D_{k}, so that $\varepsilon^{2}=0$. We want to consider $\operatorname{Mat}_{n}\left(D_{\mathrm{k}}\right)$ the space of $n \times n$ matrices over D_{k}.
4. Show that $\mathrm{GL}_{n}\left(D_{\mathrm{k}}\right)$, the group of invertible matrices over D_{k} is exactly the set:

$$
\left\{A+\varepsilon B: A \in \mathrm{GL}_{n}(\mathrm{k}), B \in \operatorname{Mat}_{n}(\mathrm{k})\right\} .
$$

The natural homomorphism e: $D_{\mathrm{k}} \rightarrow \mathrm{k}$ given by $\epsilon \mapsto 0$ induces a homomorphism of groups $\mathrm{e}_{n}: \mathrm{GL}_{n}\left(D_{\mathrm{k}}\right) \rightarrow$ $\mathrm{GL}_{n}(\mathrm{k})$. Deduce that the kernel can be identified with $\operatorname{Mat}_{n}(\mathrm{k})$, i.e. $\mathfrak{g l}_{n}(\mathrm{k})$.
5. i) The determinant is defined for a matrix with entries in any commutative ring. For $X \in$ $\operatorname{Mat}_{n}\left(D_{\mathrm{k}}\right)$ find $\operatorname{det}(X)$ in terms of the column vectors of A, B where $X=A+\varepsilon B, A, B \in \operatorname{Mat}_{n}(\mathrm{k})$. In particular, show that if $X=I+\varepsilon B$ then $\operatorname{det}(X)=1$ if and only if $\operatorname{tr}(B)=0$.
ii) The special orthogonal group is defined to be

$$
\mathrm{SO}_{n}(\mathrm{k})=\left\{A \in \mathrm{GL}_{n}(\mathrm{k}): \operatorname{det}(A)=1, A \cdot A^{t}=I\right\} .
$$

Show that the kernel of the map $\mathrm{SO}_{n}\left(D_{\mathrm{k}}\right) \rightarrow \mathrm{SO}_{n}(\mathrm{k})$ can be identified with

$$
\mathfrak{s o}_{n}(\mathrm{k})=\left\{X \in \mathfrak{g l}_{n}(\mathrm{k}): X+X^{t}=0\right\} .
$$

6. Read Appendix 1 in the lecture notes for a review of the relevant facts about symmetric bilinear forms needed for this lecture course.
