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1. Let V be a finite dimensional vector space and let A C End(V) denote a subspace consisting of
commuting diagonalisable endomorphisms. Show that we may find a basis of V' in which each element
of A is represented by a diagonal matrix.

Solution: We induct on the dimension of A, with the case dim A = 1 being clear. Choose 0 # x € T
and write T' = kx & T’ for some subspace T C T. Now, for all eigenvalues A of x we set

Vi = ker(z — Aidy)
to be the A-eigenspace of z. Then, given any v € V) and t € T' we have
(x — Aidy)(tv) = t(x — Aidy)v =0

because t commutes with z and Aidy . Hence T preserves the decomposition of V' into eigenspaces. By
assumption x acts diagonally on each V) and we are done, because we can apply induction to 7”7 and
each V). O

2. Let k be a field and let V be a k-vector space. If € End(V), and V = @, Vi is the decomposition
of V into a direct sum of generalised eigenspaces of z, we define z; € End(V) to be the linear map given
by zs(v) = A for v € V. Tt is called the semisimple part of x. Clearly it is diagonalisable.

i) Show that the element x,, = x — x; is nilpotent, and check that x4 and z,, commute.

ii) Show that if z,y € End(V') commute, and y is nilpotent, then the generalised eigenspaces of = and
x + y coincide.

Solution: For the first part, note that on each V), © — x, is nilpotent by the definition of a generalised
eigenspace, i.e. x,, is certainly nilpotent each V) and hence is nilpotent on V.

For the second part, consider the generalised eigenspace decomposition V = @, Vi(z) for . On
each V) we may write x = A.1 +n where n is nilpotent. Since z and y commute, it is clear that y
preserves each V) (z), and on V) (z) we have n and y commute. Thus (n + y) is nilpotent on Vy(z), and
hence V' = @, Vi(z) is the generalised eigenspace decomposition of x + y.

To elaborate on this: it’s clear (with the obvious notation) that Vy(z) C Vi(z + y) from the above,
but then the fact that the Vy(z)s and the V) (z+y)s both form a direct sum decomposition of V ensures
by a dimension count that the containments must all actually be equalities.

O

3. Let k be an infinite field (not necessarily algebraically closed or of characteristic zero), and suppose
that V is a finite dimensional k-vector space. If Uy, Us,,...,U, are proper subspaces of V', show that
VAU, UUU...UU,.

Solution: We use induction on r. For r = 1 the result is immediate. Now suppose that V = U:;l U;.
Then by induction we can assume that V' # [ J;_, U;, so we may pick u € V such that u ¢ (J;_, U;. By
assumption, we must then have u € U,.41. Similarly, since U,;1 is a proper subspace of V' we may pick
w € V such that w ¢ U,y;. But then consider the vectors

m=w+IueV, lek*

Clearly vy ¢ U,41, since that would imply w € U,41, thus each vy lies in some U; for 1 < i < r. But
then if k* contains more than n elements there must be two distinct elements A, 1 such that vy, v, € U;
for the same j (1 < j < r). But then it is clear that both w and u lie in U; which contradicts our
assumption. L]



There is an algebraic way to think about the idea of “infinitesimals”. The next two questions of the
sheet explore this idea a little. Let k be a field and let Dy = k[t]/(t?). Write € for the image of ¢ in D,
so that €2 = 0. We want to consider Mat,, (Dy) the space of n x n matrices over D.

4. Show that GL, (D), the group of invertible matrices over Dy is exactly the set:
{A+¢eB: A€ GL,(k), B € Mat,(k)}.

The natural homomorphism e: Dy — k given by € — 0 induces a homomorphism of groups e,, : GL,,(Dk) —
GL, (k). Deduce that the kernel can be identified with Mat, (k), i.e. gl (k).

Solution: Clearly any matrix X € Mat,,(Dy) can be written uniquely as A+ eB where A, B € Mat, (k).
If we write Y € Mat,,(Dy) similarly as C' + D then we see

XY =(A+eB)(C+eD)=AC +¢(BC + AD).

hence XY = I, if and only if AC' = I,, and BC + AD = 0. Thus it follows that X is invertible if and
only if A is invertible with inverse Y = A1 —A~!BA~!. The second part of the question is immediate,
since the kernel consists of the matrices of the form I,, + ¢B. O

5. i) The determinant is defined for a matrix with entries in any commutative ring. For X €
Mat,, (D) find det(X) in terms of the column vectors of A, B where X = A+¢B, A, B € Mat,, (k).
In particular, show that if X = I 4+ ¢B then det(X) =1 if and only if tr(B) = 0.

ii) The special orthogonal group is defined to be
SO, (k) = {A € GL, (k) : det(A) =1, A.A" = I}.
Show that the kernel of the map SO,,(Dx) — SO, (k) can be identified with
s0,(k) = {X €gl,(k) : X + X' = 0}.

Solution: Write A = (ay]...|a,) where a; (1 < i < n) are the column vectors of A, and similarly let
B = (by|...|b,). Then using the multilinearity of the determinant and the fact that 2 = 0 we see that

det(X) = det(a; +eby|...|a, +¢cb,)
=det(ay|...|a,) + stet(aﬂ bl an)
i=1

If A=1,, then det(ay]...|b;|...|a,) = B, so that the above formula becomes det(I+eB) = 1+4-ctr(B).
For the second part, we just need to check when A + eB lies in SO, (Dy), which happens when
tr(B) = 0 by the first part, and

(A +eB)(A! + eB') = AA" 4+ ¢(BA' + aBY),

which is equal to I if and only if AA* = I and BA?" 4+ B*A = 0. Thus the kernel consists of the matrices
of the form I + B where B + B! = 0 and tr(B) = 0. (This first condition implies the second if the
characteristic of k is not 2).

For the last part, note that if A, B € s0,,(k) then

[A,B)' = (AB — BA)' = B'A' — A'B* = (~B)(—A) — (—A)(~B) = BA— AB = —[A, B,

so that [A, B] € so,,(k). O

6. Read Appendix 1 in the lecture notes for a review of the relevant facts about symmetric bilinear
forms needed for this lecture course.



