C2.1a Lie algebras

Mathematical Institute, University of Oxford Michaelmas Term 2017

Problem Sheet 2

1. Let \mathfrak{g} be a complex Lie algebra. Show that \mathfrak{g} is nilpotent if and only if every 2-dimensional subalgebra of \mathfrak{g} is abelian.

2. Let *V* be a finite dimensional complex vector space and let $x, y \in \mathfrak{gl}(V)$ be linear maps. Suppose that *x* and *y* both commute with z = [x, y]. Show that *z* is a nilpotent endomorphism of *V*.

3. Let *V* be a finite dimensional complex vector space. If $x \in \text{End}(V)$, and $V = \bigoplus_{\lambda} V_{\lambda}$ is the decomposition of *V* into a direct sum of generalised eigenspaces of *x*, we define $x_s \in \text{End}(V)$ to be the linear map given by $x_s(v) = \lambda v$ for $v \in V_{\lambda}$. It is called the *semisimple* part of *x*. Clearly it is diagonalisable.

- i) Show that x is regular if and only if x_s is regular.
- ii) When is a semisimple (*i.e.* diagonalisable) element of $\mathfrak{gl}(V)$ regular?
- iii) Exhibit a Cartan subalgebra of $\mathfrak{gl}(V)$, and describe the set of all regular elements of $\mathfrak{gl}(V)$.

Terminology: Note the following definitions: if (V, ϕ) is a representation of a Lie algebra \mathfrak{g} , then we say a subspace U < V is a *subrepresentation* if $\phi(x)(U) \subseteq U$ for all $x \in \mathfrak{g}$. Note that this implies that ϕ restricts to give a Lie algebra homomorphism from \mathfrak{g} to $\mathfrak{gl}(U)$. A nonzero representation is said to be *irreducible* or *simple* if it has no non-zero proper subrepresentation.

4. Let \mathfrak{g} be a Lie algebra. Suppose that the adjoint representation $\mathrm{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is irreducible. What can you say about \mathfrak{g} ?

5. Let \mathfrak{g} be the set of complex matrices of the form $\begin{pmatrix} \alpha & \beta & \lambda \\ \gamma & \delta & \mu \\ 0 & 0 & 0 \end{pmatrix}$ where $\alpha + \delta =$

0. Show that \mathfrak{g} is a Lie subalgebra of $\mathfrak{gl}_3(\mathbb{C})$. Find the radical of \mathfrak{g} and show that \mathfrak{g} contains a subalgebra isomorphic to $\mathfrak{g}/\mathrm{rad}\mathfrak{g}$. Prove that the only ideal of \mathfrak{g} strictly contained in rad \mathfrak{g} is $\{0\}$.

6. Let \mathfrak{b}_n be the Lie algebra of upper triangular matrices in $\mathfrak{gl}_n(k)$. This is a solvable but not nilpotent Lie algebra. Find a Cartan subalgebra of \mathfrak{b}_n .