C2.1 Lie algebras

Solutions to problem sheet 4

Throughout this sheet we assume that all Lie algebras and all representations discussed are finite dimensional unless the contrary is explicitly stated, and we work over a field k which is algebraically closed of characteristic zero.

1. Let \mathfrak{g} be a simple Lie algebra. Show that any nonzero trace form on \mathfrak{g} is a multiple of the Killing form. (Hint: Show that the form can be used to identify \mathfrak{g} with \mathfrak{g}^{*} as a \mathfrak{g}-representation. See Problem Sheet 3.)

Solution: Since \mathfrak{g} is simple, the adjoint representation is irreducible (recall from a previous problem sheet). Now a symmetric bilinear form $t: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathrm{k}$ induces a linear map $\theta: \mathfrak{g} \rightarrow \mathfrak{g}^{*}$ via $\theta(x)(y)=t(x, y)$. If t is nondegenerate, then this map is an isomorphism of vector spaces (this is just the definition of nondegeneracy, as \mathfrak{g} is finite dimensional). Now we claim that if the form is invariant, then θ is an isomorphism of \mathfrak{g}-representations: indeed if $x, y, z \in \mathfrak{g}$ then
$x(\theta(y))(z)=-\theta(y)([x, z])=-t(y,[x, z])=-t([y, x], z)=t(\operatorname{ad}(x)(y), z)=\theta(\operatorname{ad}(x)(y))(z)$.
Note this is an equivalence, that is, a symmetric bilinear form is invariant if and only if the associated linear map from \mathfrak{g} to \mathfrak{g}^{*} is a \mathfrak{g}-homomorphism. Now if V is an irreducible representation, V^{*} is also (since if U is a subrepresentation of V, U^{0} is a subrepresentation of $\left.V^{*}\right)$. Thus Schur's Lemma shows that there is, up to a scalar, a unique isomorphism of \mathfrak{g}-representations from V to V^{*} if V and V^{*} are isomorphic, and no nonzero such map otherwise. Translating this via the map $\theta \mapsto t$ we see that, up to scalars, there can be at most one nondegenerate invariant symmetric bilinear form on \mathfrak{g}. Since κ is certainly one such, $\mathfrak{g} \cong \mathfrak{g}^{*}$ and so the space of invariant symmetric bilinear forms on \mathfrak{g} is one-dimensional as claimed.
2. Show that homomorphisms between semisimple Lie algebras are compatible with the Jordan decomposition, that is, if $\mathfrak{g}_{1}, \mathfrak{g}_{2}$ are semisimple Lie algebras, and $\phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ is a homomorphism, then if $x=s+n$ is the Jordan decomposition of $x \in \mathfrak{g}_{1}, \phi(x)=\phi(s)+\phi(n)$ is the Jordan decomposition of $\phi(x)$ in \mathfrak{g}_{2}. (For this part you may assume the fact, stated in lectures, that if $x=s+n$ is the Jordan decomposition of x and $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ is a representation, then $\rho(s)$ is semsimple and $\rho(n)$ is nilpotent.)

Solution: Given an arbitrary homomorphism $\phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$, we obtain a representation of \mathfrak{g}_{1} on \mathfrak{g}_{2} via the composition $\rho=\operatorname{ad}_{\mathfrak{g}_{2}} \circ \phi: \mathfrak{g}_{1} \rightarrow \mathfrak{g l}\left(\mathfrak{g}_{2}\right)\left(\right.$ where $\operatorname{ad}_{\mathfrak{g}_{2}}$ denotes the adjoint representation of \mathfrak{g}_{2}). The compatibility of the Jordan decomposition with representations implies that if $x=s+n$ is the Jordan decomposition of $x \in \mathfrak{g}_{1}$, then $\operatorname{ad}_{\mathfrak{g}_{2}}(\phi(s))$ is semisimple and $\operatorname{ad}_{\mathfrak{g}_{2}}(\phi(n))$ is nilpotent. Since clearly and $[\phi(s), \phi(n)]=\phi([s, n])=0$, it follows by uniqueness that $\phi(x)=\phi(s)+\phi(n)$ is the Jordan decomposition of $\phi(x)$ as required.
3. Use Weyl's theorem to give an alternative proof of the fact that any derivation of a semisimple Lie algebra \mathfrak{g} is inner. (Hint: Suppose that δ is a
derivation, show that $V=\mathrm{k} \oplus \mathfrak{g}$ has the structure of a \mathfrak{g} representation via $x(a, y)=(0, a \delta(x)+[x, y])$, and consider a complement to the subrepresentation \mathfrak{g}.)

Solution: We first check that V is a representation: for any $a \in \mathrm{k}, x, y, z \in \mathfrak{g}$, we have

$$
\begin{aligned}
(x . y-y . x)(a, z) & =x(0, a . \delta(y)+[y, z])-y(0, a . \delta(x)+[x, z]) \\
& =(0,[x, a . \delta(y)+[y, z]])-(0,[y, a . \delta(x)+[x, z]) \\
& =(0, a[x, \delta(y)]+[x,[y, z]]+a[\delta(x), y]-[y,[x, z]]) \\
& =(0, a \delta([x, y])+[[x, y], z]) \\
& =[x, y](a, z) .
\end{aligned}
$$

where in the second last line we use the Jacobi identity and the definition of a derivation. Now it is clear that $M=\{(0, x): x \in \mathfrak{g}\}$ is a subrepresentation of V (isomorphic to the adjoint representation) and the quotient V / M is isomorphic to the trivial representation. By Weyl's theorem M has a complementary subrepresentation L, which is the trivial representation. But then if $(a, z) \in V$ is a nonzero element of M, we may scale it so that $a=-1$, and then for all $x \in \mathfrak{g}$ we have $x(-1, z)=0$, which implies $-\delta(x)+[x, z]=0$, that is $\delta=\operatorname{ad}(z)$.
4. Let $\mathfrak{g}=\mathfrak{s p}_{2 n}(\mathbb{C})$ be the symplectic Lie algebra. Show that \mathfrak{h}, the space of matrices in \mathfrak{g} which are diagonal, is a Cartan subalgebra, and find the roots of $\mathfrak{s p}_{2 n}(\mathbb{C})$.

Solution: $\mathfrak{s p}_{2 n}$: For a matrix A, in this question we will use the notation ${ }^{t} A$ to denote the matrix obtained by flipping the entries along the "anti-diagonal", so that if $A=\left(a_{i j}\right)$ then the (i, j)-th entry of ${ }^{t} A$ is $a_{n+1-j, n+1-i}$. The Lie algebra $\mathfrak{s p}_{2 n}$ then consists of block matrices $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$. such that $-A={ }^{t} D$ and ${ }^{t} B=$ $B,{ }^{t} C=C$. Again, let \mathfrak{h} denote the intersection of $\mathfrak{s p}_{2 n}$ with the diagonal matrices. Then

$$
\mathfrak{h}=\left\{\sum_{i=1}^{2 n} \lambda_{i} E_{i i} \mid \text { and } \lambda_{i}=-\lambda_{2 n+1-i}\right\} .
$$

Hence we may identify

$$
\mathfrak{h}^{*}=\bigoplus_{i=1}^{n} e_{i}^{*}
$$

where $e_{i}^{*}(h)=\lambda_{i}$. We can write

$$
\begin{aligned}
\mathfrak{s p}_{2 n} & =\mathfrak{h} \oplus \bigoplus_{i \neq j \leq n} \mathbb{C}\left(E_{i j}-E_{2 n+1-i, 2 n+1-j}\right) \oplus \\
& \oplus \bigoplus_{1 \leq i+j \leq n} \mathbb{C}\left(E_{i, n+j}+E_{n+1-j, 2 n+1-i}\right) \oplus \bigoplus_{i=1}^{n} E_{i, 2 n+1-i} \\
& \oplus \bigoplus_{1 \leq i+j \leq n} \mathbb{C}\left(E_{n+i, j}+E_{2 n+1-j, n+1-i}\right) \oplus \bigoplus_{i=1}^{n} E_{2 n+1-i, i}
\end{aligned}
$$

and one calculates the weights in each case to be $e_{i}^{*}-e_{j}^{*}, e_{i}^{*}+e_{j}^{*}, 2 e_{i}^{*},-e_{i}^{*}-e_{j}^{*}$ and $-2 e_{i}^{*}$. Hence \mathfrak{h} is a Cartan subalgebra and R is of type C_{n}.
5. Let \mathfrak{g} be a complex semisimple Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra. If $\Phi \subset \mathfrak{h}^{*}$ is the corresponding root system find an expression for the dimension of \mathfrak{g} in terms of Φ. (In particular, the dimension of \mathfrak{g} is determined by the root system).

Solution: In lectures we have seen the decomposition

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha} .
$$

We also saw that $\operatorname{dim} \mathfrak{g}_{\alpha}=1$ for all $\alpha \in \Phi$. Hence

$$
\operatorname{dim} \mathfrak{g}=\operatorname{dim} \mathfrak{h}+|\Phi|=\operatorname{rank}(\Phi)+|\Phi| .
$$

6. Suppose that \mathfrak{g} is a Lie subalgebra of $\mathfrak{g l}(V)$. Show that if V is irreducible as a \mathfrak{g}-representation and $\operatorname{tr}(\rho(x))=0$ for all $x \in \mathfrak{g}$, then \mathfrak{g} is semisimple.

Solution: Let \mathfrak{s} be the radical of \mathfrak{g}. Then since \mathfrak{s} is solvable, by Lie's theorem there is a nonzero vector v and a linear map $\lambda: \mathfrak{s} / D(\mathfrak{s}) \rightarrow \mathrm{k}$ such that $\rho(x)(v)=$ $\lambda(x) . v$. But then as \mathfrak{s} is an ideal, we see that for all $x \in \mathfrak{g}, s \in \mathfrak{s}$ we have

$$
\begin{aligned}
s x(v) & =[s, x]+x s(v) \\
& =\lambda(s) x(v)
\end{aligned}
$$

by Lie's Lemma. It follows the set of vectors $\{v \in V: s(v)=\lambda(s) . v\}$ is a nonzero \mathfrak{g}-subrepresentation of V, so that since V is irreducible it must be all of V. But then the $\mathfrak{s} \subseteq \mathfrak{g} \cap \mathrm{k}^{2} \mathrm{id}_{V}$, and since we assume that $\operatorname{tr}(x)=0$ for all $x \in \mathfrak{g}$ this is zero so that $\mathfrak{s}=0$ as required.
7. Let k be a field and let $\mathfrak{s}_{\mathrm{k}}$ be the 3 -dimensional k -Lie algebra with basis $\left\{e_{0}, e_{1}, e_{2}\right\}$ and structure constants $\left[e_{i}, e_{i+1}\right]=e_{i+2}$ (where we read the indices modulo 3 , so that we have for example $\left[e_{2}, e_{0}\right]=e_{1}$).
i) Show that \mathfrak{s}_{k} is a simple Lie algebra.
ii) Show that $\mathfrak{s}_{\mathbb{R}}$ is isomorphic to the Lie algebra $\left(\mathbb{R}^{3}, \wedge\right)$, where \wedge is the cross product.
iii) Show that $\mathfrak{s}_{\mathbb{R}}$ (equivalently, $\left(\mathbb{R}^{3}, \wedge\right)$) is not isomorphic to $\mathfrak{s l}_{2}(\mathbb{R})$. (Hint: You may show that $\left(\mathbb{R}^{3}, \wedge\right)$ does not have any nonzero elements x such that $\operatorname{ad}(x)$ is diagonalisable.
iv) Show that $\mathfrak{s}_{\mathbb{C}} \cong \mathfrak{s l}_{2}(\mathbb{C})$.

Solution: To see that $\mathfrak{s}_{\mathrm{k}}$ is simple, suppose that I is a nonzero ideal and let $x=a e_{0}+b e_{1}+c e_{2}$ be a nonzero element of I. Then $\left[e_{1},\left[e_{0}, x\right]\right]=\left[e_{1}, b e_{2}-c e_{1}\right]=$ $b e_{0} \in I$, and similarly we find $a e_{2}, c e_{1} \in I$ also. Thus since $x \neq 0$, we must have some e_{i} in I, but then clearly all of $\left\{e_{0}, e_{1}, e_{2}\right\}$ lie in I so that $I=\mathfrak{s}_{\mathrm{k}}$ as required.

By direct calculation we see that the image of the adjoint representation ad: $\mathfrak{s}_{\mathrm{k}} \rightarrow \mathfrak{g l}_{3}(\mathrm{k})$ (where we use the basis $\left\{e_{0}, e_{1}, e_{3}\right\}$ to identify $\mathfrak{s}_{\mathrm{k}}$ with k^{3}) is exactly the Lie algebra of skew-symmetric matrices, indeed we have:

$$
\operatorname{ad}\left(a e_{0}+b e_{1}+c e_{2}\right)=\left(\begin{array}{ccc}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right)
$$

which is clearly injective, so it follows \mathfrak{s}_{k} is in fact isomorphic to $\left(\mathbb{R}^{3}, \wedge\right)$.
The characteristic polynomial of a skew-symmetric matrix as above is $\lambda\left(\lambda^{2}+\right.$ $a^{2}+b^{2}+c^{2}$), thus when $\mathrm{k}=\mathbb{R}$, a non-zero skew-symmetric 3×3 matrix over \mathbb{R} has exactly one real eigenvalue. On the other hand, recall that $\mathfrak{s l}_{2}(k)$ has a basis $\{e, f, h\}$ with structure constants $[e, f]=h,[h, e]=2 e,[h, f]=-2 f$, thus the action of $\operatorname{ad}(h)$ on $\mathfrak{s l}_{2}(\mathbb{R})$ is diagonalisable with 3 distinct eigenvalues. It follows that we cannot have $\mathfrak{s}_{\mathbb{R}} \cong \mathfrak{s l}_{2}(\mathbb{R})$. When we take $k=\mathbb{C}$ however, we can easily find a skew-symmetric matrix H with the required eigenvalues, and then find the ± 2-eigenspaces of H to determine matrices E and F (given H, the equation $[E, F]=H$ will normalize E, F up to a constant). Then we can define an isomorphism from $\mathfrak{s l}_{2}(\mathbb{C})$ via $h \mapsto H, e \mapsto E$, and $f \mapsto F$.

For example, if you take $H=2 i e_{0}$, and then we may take $E=e_{1}+i e_{2}$, and $F=-e_{1}+i e_{2}$. There are many other options however: you can take e.g. $H=$ $i \sqrt{2}\left(e_{0}-e_{2}\right)$, and then $E=\frac{1}{\sqrt{2}} e_{0}-i e_{1}+\frac{1}{\sqrt{2}} e_{2}$, and $F=-\left(\frac{1}{\sqrt{2}} e_{0}+i e_{1}+\frac{1}{\sqrt{2}} e_{2}\right)$.

Note that this shows the classification of simple Lie algebras over characteristic zero fields which are not algebraically closed is more delicate than the algebraically closed case.

Solution: Question 8: For the classification of the Dynkin diagrams see
James Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, 1972, end of Chapter III.

