C2.1 Lie algebras Solutions to problem sheet 4

Throughout this sheet we assume that all Lie algebras and all representations discussed are finite dimensional unless the contrary is explicitly stated, and we work over a field k which is algebraically closed of characteristic zero.

1. Let \mathfrak{g} be a simple Lie algebra. Show that any nonzero trace form on \mathfrak{g} is a multiple of the Killing form. (*Hint*: Show that the form can be used to identify \mathfrak{g} with \mathfrak{g}^* as a \mathfrak{g} -representation. See Problem Sheet 3.)

Solution: Since g is simple, the adjoint representation is irreducible (recall from a previous problem sheet). Now a symmetric bilinear form $t: \mathfrak{g} \times \mathfrak{g} \to k$ induces a linear map $\theta: \mathfrak{g} \to \mathfrak{g}^*$ via $\theta(x)(y) = t(x, y)$. If t is nondegenerate, then this map is an isomorphism of vector spaces (this is just the definition of nondegeneracy, as g is finite dimensional). Now we claim that if the form is invariant, then θ is an isomorphism of g-representations: indeed if $x, y, z \in \mathfrak{g}$ then

 $x(\theta(y))(z) = -\theta(y)([x, z]) = -t(y, [x, z]) = -t([y, x], z) = t(\operatorname{ad}(x)(y), z) = \theta(\operatorname{ad}(x)(y))(z).$

Note this is an equivalence, that is, a symmetric bilinear form is invariant if and only if the associated linear map from g to g* is a g-homomorphism. Now if *V* is an irreducible representation, *V** is also (since if *U* is a subrepresentation of *V*, U^0 is a subrepresentation of *V**). Thus Schur's Lemma shows that there is, up to a scalar, a unique isomorphism of g-representations from *V* to *V** if *V* and *V** are isomorphic, and no nonzero such map otherwise. Translating this via the map $\theta \mapsto t$ we see that, up to scalars, there can be at most one nondegenerate invariant symmetric bilinear form on g. Since κ is certainly one such, $g \cong g^*$ and so the space of invariant symmetric bilinear forms on g is one-dimensional as claimed.

2. Show that homomorphisms between semisimple Lie algebras are compatible with the Jordan decomposition, that is, if $\mathfrak{g}_1, \mathfrak{g}_2$ are semisimple Lie algebras, and $\phi: \mathfrak{g}_1 \to \mathfrak{g}_2$ is a homomorphism, then if x = s + n is the Jordan decomposition of $x \in \mathfrak{g}_1, \phi(x) = \phi(s) + \phi(n)$ is the Jordan decomposition of $\phi(x)$ in \mathfrak{g}_2 . (For this part you may assume the fact, stated in lectures, that if x = s + n is the Jordan decomposition of x and $\rho: \mathfrak{g} \to \mathfrak{gl}(V)$ is a representation, then $\rho(s)$ is semsimple and $\rho(n)$ is nilpotent.)

Solution: Given an arbitrary homomorphism $\phi: \mathfrak{g}_1 \to \mathfrak{g}_2$, we obtain a representation of \mathfrak{g}_1 on \mathfrak{g}_2 via the composition $\rho = \mathrm{ad}_{\mathfrak{g}_2} \circ \phi: \mathfrak{g}_1 \to \mathfrak{gl}(\mathfrak{g}_2)$ (where $\mathrm{ad}_{\mathfrak{g}_2}$ denotes the adjoint representation of \mathfrak{g}_2). The compatibility of the Jordan decomposition with representations implies that if x = s + n is the Jordan decomposition of $x \in \mathfrak{g}_1$, then $\mathrm{ad}_{\mathfrak{g}_2}(\phi(s))$ is semisimple and $\mathrm{ad}_{\mathfrak{g}_2}(\phi(n))$ is nilpotent. Since clearly and $[\phi(s), \phi(n)] = \phi([s, n]) = 0$, it follows by uniqueness that $\phi(x) = \phi(s) + \phi(n)$ is the Jordan decomposition of $\phi(x)$ as required. \Box

3. Use Weyl's theorem to give an alternative proof of the fact that any derivation of a semisimple Lie algebra \mathfrak{g} is inner. (*Hint*: Suppose that δ is a

derivation, show that $V = \mathsf{k} \oplus \mathfrak{g}$ has the structure of a \mathfrak{g} representation via $x(a, y) = (0, a\delta(x) + [x, y])$, and consider a complement to the subrepresentation \mathfrak{g} .)

Solution: We first check that V is a representation: for any $a \in \mathsf{k}, x, y, z \in \mathfrak{g}$, we have

$$\begin{split} (x.y - y.x)(a,z) &= x(0, a.\delta(y) + [y,z]) - y(0, a.\delta(x) + [x,z]) \\ &= (0, [x, a.\delta(y) + [y,z]]) - (0, [y, a.\delta(x) + [x,z]) \\ &= (0, a[x,\delta(y)] + [x, [y,z]] + a[\delta(x), y] - [y, [x,z]]) \\ &= (0, a\delta([x,y]) + [[x,y],z]) \\ &= [x,y](a,z). \end{split}$$

where in the second last line we use the Jacobi identity and the definition of a derivation. Now it is clear that $M = \{(0, x) : x \in \mathfrak{g}\}$ is a subrepresentation of V (isomorphic to the adjoint representation) and the quotient V/M is isomorphic to the trivial representation. By Weyl's theorem M has a complementary subrepresentation L, which is the trivial representation. But then if $(a, z) \in V$ is a nonzero element of M, we may scale it so that a = -1, and then for all $x \in \mathfrak{g}$ we have x(-1, z) = 0, which implies $-\delta(x) + [x, z] = 0$, that is $\delta = \operatorname{ad}(z)$. \Box

4. Let $\mathfrak{g} = \mathfrak{sp}_{2n}(\mathbb{C})$ be the symplectic Lie algebra. Show that \mathfrak{h} , the space of matrices in \mathfrak{g} which are diagonal, is a Cartan subalgebra, and find the roots of $\mathfrak{sp}_{2n}(\mathbb{C})$.

Solution: \mathfrak{sp}_{2n} : For a matrix A, in this question we will use the notation ${}^{t}A$ to denote the matrix obtained by flipping the entries along the "anti-diagonal", so that if $A = (a_{ij})$ then the (i, j)-th entry of ${}^{t}A$ is $a_{n+1-j,n+1-i}$. The Lie algebra \mathfrak{sp}_{2n} then consists of block matrices $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$. such that $-A = {}^{t}D$ and ${}^{t}B = B$, ${}^{t}C = C$. Again, let \mathfrak{h} denote the intersection of \mathfrak{sp}_{2n} with the diagonal matrices. Then

$$\mathfrak{h} = \left\{ \sum_{i=1}^{2n} \lambda_i E_{ii} \mid \text{and } \lambda_i = -\lambda_{2n+1-i} \right\}.$$

Hence we may identify

$$\mathfrak{h}^* = \bigoplus_{i=1}^n e_i^*$$

where $e_i^*(h) = \lambda_i$. We can write

$$\mathfrak{sp}_{2n} = \mathfrak{h} \oplus \bigoplus_{i \neq j \leq n} \mathbb{C}(E_{ij} - E_{2n+1-i,2n+1-j}) \oplus$$
$$\oplus \bigoplus_{1 \leq i+j \leq n} \mathbb{C}(E_{i,n+j} + E_{n+1-j,2n+1-i}) \oplus \bigoplus_{i=1}^{n} E_{i,2n+1-i}$$
$$\oplus \bigoplus_{1 \leq i+j \leq n} \mathbb{C}(E_{n+i,j} + E_{2n+1-j,n+1-i}) \oplus \bigoplus_{i=1}^{n} E_{2n+1-i,i}$$

and one calculates the weights in each case to be $e_i^* - e_j^*$, $e_i^* + e_j^*$, $2e_i^*$, $-e_i^* - e_j^*$ and $-2e_i^*$. Hence \mathfrak{h} is a Cartan subalgebra and R is of type C_n .

5. Let \mathfrak{g} be a complex semisimple Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra. If $\Phi \subset \mathfrak{h}^*$ is the corresponding root system find an expression for the dimension of \mathfrak{g} in terms of Φ . (In particular, the dimension of \mathfrak{g} is determined by the root system).

Solution: In lectures we have seen the decomposition

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Phi} \mathfrak{g}_{\alpha}.$$

We also saw that $\dim \mathfrak{g}_{\alpha} = 1$ for all $\alpha \in \Phi$. Hence

$$\dim \mathfrak{g} = \dim \mathfrak{h} + |\Phi| = \operatorname{rank}(\Phi) + |\Phi|.$$

6. Suppose that \mathfrak{g} is a Lie subalgebra of $\mathfrak{gl}(V)$. Show that if *V* is irreducible as a \mathfrak{g} -representation and $\operatorname{tr}(\rho(x)) = 0$ for all $x \in \mathfrak{g}$, then \mathfrak{g} is semisimple.

Solution: Let \mathfrak{s} be the radical of \mathfrak{g} . Then since \mathfrak{s} is solvable, by Lie's theorem there is a nonzero vector v and a linear map $\lambda \colon \mathfrak{s}/D(\mathfrak{s}) \to \mathsf{k}$ such that $\rho(x)(v) = \lambda(x).v$. But then as \mathfrak{s} is an ideal, we see that for all $x \in \mathfrak{g}, s \in \mathfrak{s}$ we have

$$sx(v) = [s, x] + xs(v)$$
$$= \lambda(s)x(v)$$

by Lie's Lemma. It follows the set of vectors $\{v \in V : s(v) = \lambda(s).v\}$ is a nonzero g-subrepresentation of V, so that since V is irreducible it must be all of V. But then the $\mathfrak{s} \subseteq \mathfrak{g} \cap k.id_V$, and since we assume that tr(x) = 0 for all $x \in \mathfrak{g}$ this is zero so that $\mathfrak{s} = 0$ as required.

7. Let k be a field and let \mathfrak{s}_k be the 3-dimensional k-Lie algebra with basis $\{e_0, e_1, e_2\}$ and structure constants $[e_i, e_{i+1}] = e_{i+2}$ (where we read the indices modulo 3, so that we have for example $[e_2, e_0] = e_1$).

- i) Show that \mathfrak{s}_k is a simple Lie algebra.
- ii) Show that $\mathfrak{s}_{\mathbb{R}}$ is isomorphic to the Lie algebra (\mathbb{R}^3, \wedge) , where \wedge is the cross product.
- iii) Show that $\mathfrak{s}_{\mathbb{R}}$ (equivalently, (\mathbb{R}^3, \wedge)) is not isomorphic to $\mathfrak{sl}_2(\mathbb{R})$. (*Hint*: You may show that (\mathbb{R}^3, \wedge) does not have any nonzero elements x such that ad(x) is diagonalisable.
- iv) Show that $\mathfrak{s}_{\mathbb{C}} \cong \mathfrak{sl}_2(\mathbb{C})$.

Solution: To see that \mathfrak{s}_k is simple, suppose that I is a nonzero ideal and let $x = ae_0 + be_1 + ce_2$ be a nonzero element of I. Then $[e_1, [e_0, x]] = [e_1, be_2 - ce_1] = be_0 \in I$, and similarly we find $ae_2, ce_1 \in I$ also. Thus since $x \neq 0$, we must have some e_i in I, but then clearly all of $\{e_0, e_1, e_2\}$ lie in I so that $I = \mathfrak{s}_k$ as required.

By direct calculation we see that the image of the adjoint representation $ad: \mathfrak{s}_k \to \mathfrak{gl}_3(k)$ (where we use the basis $\{e_0, e_1, e_3\}$ to identify \mathfrak{s}_k with k^3) is exactly the Lie algebra of skew-symmetric matrices, indeed we have:

$$ad(ae_0 + be_1 + ce_2) = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}$$

which is clearly injective, so it follows \mathfrak{s}_k is in fact isomorphic to (\mathbb{R}^3, \wedge) .

The characteristic polynomial of a skew-symmetric matrix as above is $\lambda(\lambda^2 + a^2 + b^2 + c^2)$, thus when $k = \mathbb{R}$, a non-zero skew-symmetric 3×3 matrix over \mathbb{R} has exactly one real eigenvalue. On the other hand, recall that $\mathfrak{sl}_2(k)$ has a basis $\{e, f, h\}$ with structure constants [e, f] = h, [h, e] = 2e, [h, f] = -2f, thus the action of ad(h) on $\mathfrak{sl}_2(\mathbb{R})$ is diagonalisable with 3 distinct eigenvalues. It follows that we cannot have $\mathfrak{s}_{\mathbb{R}} \cong \mathfrak{sl}_2(\mathbb{R})$. When we take $k = \mathbb{C}$ however, we can easily find a skew-symmetric matrix H with the required eigenvalues, and then find the ± 2 -eigenspaces of H to determine matrices E and F (given H, the equation [E, F] = H will normalize E, F up to a constant). Then we can define an isomorphism from $\mathfrak{sl}_2(\mathbb{C})$ via $h \mapsto H, e \mapsto E$, and $f \mapsto F$.

For example, if you take $H = 2ie_0$, and then we may take $E = e_1 + ie_2$, and $F = -e_1 + ie_2$. There are many other options however: you can take e.g. $H = i\sqrt{2}(e_0 - e_2)$, and then $E = \frac{1}{\sqrt{2}}e_0 - ie_1 + \frac{1}{\sqrt{2}}e_2$, and $F = -(\frac{1}{\sqrt{2}}e_0 + ie_1 + \frac{1}{\sqrt{2}}e_2)$.

Note that this shows the classification of simple Lie algebras over characteristic zero fields which are not algebraically closed is more delicate than the algebraically closed case. $\hfill \Box$

Solution: Question 8: For the classification of the Dynkin diagrams see

James Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, 1972, end of Chapter III.