Analytic Topology: Problem sheet 1

Some of the problems on this sheet may have the character of revision, or be extensions of problems on sheet 0 .

1. Prove that the following are equivalent:
(i) X is Hausdorff;
(ii) if $p \in X$, then for each $q \neq p$, there is an open set $U \ni p$ such that $q \notin \bar{U}$;
(iii) for each $p \in X, \bigcap\{\bar{U}: U$ open and $U \ni p\}=\{p\}$.
2. (i) If X is regular, $C \subseteq X, D \subseteq X, C$ compact, D closed, and $C \cap D=\varnothing$, find disjoint open U, V such that $C \subseteq U$ and $D \subseteq V$, and hence show that a compact Hausdorff space is normal.
(ii) Show that X is normal if and only if, for each closed C and open $U \supseteq C$, there exists open V such that $C \subseteq V \subseteq \bar{V} \subseteq U$.
(iii) X is said to be completely normal if, for each pair of subsets A, B such that $\bar{A} \cap B=\varnothing=A \cap \bar{B}$, there exist disjoint open U, V such that $A \subseteq U, B \subseteq V$. Prove that a topological space is completely normal if and only if every subspace is normal.
3. Let (X, d) be a metric space with its usual topology, $\varnothing \neq A \subseteq X$. Define, for $x \in X$, $D(x, A)=\inf \{d(x, y): y \in A\}$. Prove that:
(i) $D(x, A): X \rightarrow \mathbb{R}$ is continuous (x varies, A is fixed),
(ii) $D(x, A)=0$ if and only if $x \in \bar{A}$,
(iii) if C is closed in X, there exists an infinite sequence $\left(V_{n}\right)$ of sets V_{n} open in X with $C=\bigcap_{n \in \mathbb{N}} V_{n}$,
(iv) X is completely normal.
4. X is extremally disconnected if the closure of every open set is open. Subsets A and B are functionally separated if there is a continuous function $f: X \rightarrow[0,1]$ such that $f[A] \subseteq\{0\}, f[B] \subseteq\{1\}$. ([0, 1] has its subspace topology inherited from \mathbb{R}. We write \subseteq for $=$ in case A or B is empty.) Prove that the following are equivalent:
(i) X is extremally disconnected,
(ii) every two disjoint open sets in X have disjoint closures,
(iii) every two disjoint open sets in X are functionally separated.
5. A topological space X is first countable if and only if there is a countable local basis at every point (that is, for all $x \in X$, there exists a countable family $\left\{U_{n}: n \in \mathbb{N}\right\}$ such that for all open $V \ni x, U_{n} \subseteq V$. Suppose X is first countable and $f: X \rightarrow Y$. Prove that:
(i) if $A \subseteq X$, then $x \in \bar{A}$ if and only if there is a sequence on A converging to x;
(ii) f is continuous at x_{0} if and only if $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$ for each sequence $\left(x_{n}\right)$ for which $x_{n} \rightarrow x_{0}$.
