
Analytic Topology: Problem sheet 1

These solutions come with a mild health warning. They are lightly edited from the
file distributed to the class tutors and TAs, so aimed at a different audience. I make no
claim that the solutions given are the only solutions or even the best; you may very well
have found solutions that are more economical or more illuminating than mine.

1. Prove that the following are equivalent:

(i) X is Hausdorff;

(ii) if p ∈ X, then for each q 6= p, there is an open set U ∋ p such that q /∈ U ;

(iii) for each p ∈ X,
⋂
{U : U open and U ∋ p} = {p}.

Clause (ii) looks more like the standard statement of the T1 axiom, or one of the
standard ways of defining regularity, or like the restatement of normality in clause (ii) of
the next question. Clauses (ii) and (iii) have in common that if you replace U by U , you
get something equivalent to T1.

This question is largely set algebra.

(i) implies (ii): Suppose p 6= q. Find disjoint open U ∋ p and V ∋ q. Since V is an
open neighbourhood of q not meeting U , q /∈ U .

(ii) implies (iii): That
⋂
{U : U open and U ∋ p} ⊇ {p} is trivial. That

⋂
{U : U open

and U ∋ p} ⊆ {p} follows directly from (ii), because any q 6= p fails to belong to at least
one U .

(iii) implies (i): Let p 6= q. Find an open set U such that p ∈ U and q /∈ U . Let
V = X \ U . Then U and V are disjoint open sets, p ∈ U , and q ∈ V , as required.

2. (i) If X is regular, C ⊆ X, D ⊆ X, C compact, D closed, C ∩D = ∅, find disjoint
open U, V such that C ⊆ U and D ⊆ V , and hence show that a compact Hausdorff space
is normal.

This is very similar to question 6 on sheet 0.

Appealing to question 6 on sheet 0, for each y ∈ D let Uy and Vy be disjoint open sets
such that C ⊆ Uy and y ∈ Vy.

Then the family {Vy : y ∈ D} is an open cover of D.
Now D is a closed subset of a compact space, so it is compact. Hence there is a finite

subcover {Vyi
: i < n} (where n is some natural number).

Let V =
⋃

i<n Vyi
, and let U =

⋂
i<n Uyi

. These sets are disjoint and open, C ⊆ U ,
and D ⊆ V .

It is worth emphasising that the intersection defining U is finite, so that U can be
defined as an open set. This is the point at which compactness is vital.

(ii) Show that X is normal if and only if, for each closed C and open U ⊇ C, there
exists open V such that C ⊆ V ⊆ V ⊆ U .

This is really set algebra.

⇒: Suppose that X is normal. Suppose that C is closed and U is open and C ⊆ U .
Then D = X \ U is closed and disjoint from C.



Let V and W be disjoint open sets such that C ⊆ V and D ⊆ W .
V and W are disjoint, so V ⊆ X \ W ; and W is open, so X \ W is closed. Hence

V ⊆ X \W .
Now we can see that C ⊆ V ⊆ V ⊆ X \W ⊆ X \D = U .
⇐: Let C and D be disjoint and closed.
Let U = X \D; then U is open and C ⊆ U .
Find an open set V such that C ⊆ V ⊆ V ⊆ U .
Let W = X \ V .
Then V and W are disjoint and open, C ⊆ V , and D ⊆ W .

(iii) X is said to be completely normal if, for each pair of subsets A, B such that
A ∩ B = ∅ = A ∩ B, there exist disjoint open U, V such that A ⊆ U, B ⊆ V . Prove that
a topological space is completely normal if and only if every subspace is normal.

⇒: Let X be completely normal and let Y be a subspace of X . Let C and D be
disjoint closed subsets of Y .

Then there must exist closed sets C′ andD′ inX such that C = Y ∩C′ andD = Y ∩D′;

it follows at once that C = Y ∩ C
X

(where C
X

refers to the closure of C in the space X)

and D = Y ∩D
X
.

Hence since C and D are disjoint, C
X
∩D = ∅ = C ∩D

X
.

Since X is completely normal, there exist disjoint sets U ′ and V ′ which are open in
X such that C ⊆ U ′ and D ⊆ V ′.

Let U = Y ∩U ′ and V = Y ∩V ′; then U and V are disjoint open subsets of Y , C ⊆ U
and D ⊆ V .

Hence the subspace Y is normal.
⇐: The difficult part of this is choosing the correct subspace of X .
Suppose that every subspace of X is normal. Suppose that A and B are subsets of X

such that A ∩B = ∅ = A ∩B.
Let Y = X \ (A ∩B).
Notice that A,B ⊆ Y , because of the condition that A ∩B = ∅ = A ∩B.
Then if C = Y ∩A and D = Y ∩B, then C and D are closed in Y and, by the careful

choice of Y , they are disjoint.
Now Y is normal, so there exist disjoint sets U and V which are open in Y such C ⊆ U

and D ⊆ V .
Now U and V are open in Y and Y is open in X , so U and V are open in X . Also

A ⊆ U and B ⊆ V , as required.

3. Let (X, d) be a metric space with its usual topology, ∅ 6= A ⊆ X. Define, for x ∈ X,
D(x,A) = inf{d(x, y) : y ∈ A}. Prove that:

(i) D(x,A) : X → R is continuous (x varies, A is fixed),

Given x ∈ X and ǫ > 0, we seek δ > 0 such that if d(x, y) < δ, then it follows that
|D(x,A)−D(y, A)| < ǫ. We do this by the usual method of deciding what value of δ makes
the calculations come out right.

If d(x, y) < δ, pick z ∈ A such that d(x, z) < D(x,A)+δ. Then d(y, z) < D(x,A)+2δ,
so it follows that D(y, A) < D(x,A) + 2δ.



Similarly D(x,A) < D(y, A) + 2δ.
So, assuming we chose δ to be ǫ/2, we have the required result.

(ii) D(x,A) = 0 if and only if x ∈ A,

If D(x,A) > 0, then let δ = 1

2
D(x,A); then the ball of radius δ around x does not

meet A, and so x /∈ A.
If on the other hand D(x,A) = 0, then find zn ∈ A witnessing the fact that D(x,A) <

1

n
; that is, so that d(x, zn) <

1

n
.

Then the sequence (zn)n∈N converges to x, and so x ∈ A.

(iii) if C is closed in X, there exists an infinite sequence (Vn) of sets Vn open in X
with C =

⋂
n∈N

Vn,

Here we simply let Vn = {y ∈ X : D(y, C) < 1

n
}. This is open, because D(·, C) is

continuous and Vn is the inverse image of the set (−∞, 1/n) under it, and the intersection⋂
n∈N

Vn is equal to A by part (ii).

(iv) X is completely normal.

Suppose that A and B are subsets of X such that A ∩ B = ∅ = A ∩ B. Define U to
be {x ∈ X : D(x,A) < D(x,B)}, and V to be {x ∈ X : D(x,B) < D(x,A)}.

U and V are clearly disjoint. They are also open: U is open because it is the inverse
image of the set (0,∞) under the continuous function D(·, B)−D(·, A), and V is open for
a similar reason.

Also A ⊆ U , because if x ∈ A, then D(x,A) = 0, and since x /∈ B, D(x,B) > 0, so
D(x,A) < D(x,B). B ⊆ V similarly.

4. X is extremally disconnected if the closure of every open set is open. Subsets A and
B are functionally separated if there is a continuous function f : X → [0, 1] such that
f [A] ⊆ {0}, f [B] ⊆ {1}. ([0, 1] has its subspace topology inherited from R. We write ⊆ for
= in case A or B is empty.) Prove that the following are equivalent:

(i) X is extremally disconnected,

(ii) every two disjoint open sets in X have disjoint closures,

(iii) every two disjoint open sets in X are functionally separated.

(i)⇒(ii): Let U and V be disjoint open sets.
Then U is open.
Hence, if U ∩ V 6= ∅, then U ∩ V 6= ∅.
But now, since V is open, V ∩ U 6= ∅.
But this contradicts disjointness of U and V .
So U and V must be disjoint.

(ii)⇒(i): Let U be an open set.
Then X \ U is also open, and is disjoint from U .
Hence X \ U and U have disjoint closures.

It follows that X \ U = X \ U .
So X \ U is closed.
Hence U is open, as required.



(i), (ii)⇒(iii): Let U and V be disjoint open sets.
Then by (i), U is open, and by (ii), U and V are disjoint.
Since U is both closed and open, the function f which is defined so that f(x) = 0 if

x ∈ U and f(x) = 1 if x /∈ U , is continuous, and since V ∩ U = ∅, f(x) = 1 for all x ∈ V .
So f functionally separates U and V .

(iii)⇒(ii): Let U and V be disjoint open sets.
Let f : X → [0, 1] be a continuous function such that f [U ] ⊆ {0} and f [V ] ⊆ {1}.
Then U ⊆ f−1(0), and V ⊆ f−1(1).
Hence U and V have disjoint closures.

5. Suppose X is first countable and f : X → Y . Prove that:

(i) if A ⊆ X, then x ∈ A if and only if there is a sequence on A converging to x;

Basically the same proof as for metric spaces.

Let {Un : n ∈ N} be a countable basis at x, with the property that for all n, Un+1 ⊆
Un. Such a basis can be found because if {Vn : n ∈ N} is a countable basis at x, then we
can define Un to be

⋂
m≤n Vn. This is a finite intersection of open sets and so open, and

it is clear that Un+1 ⊆ Un.

⇒: If x ∈ A, then every open neighbourhood of x meets A. Let an ∈ A ∩ Un. Then
every Um contains all but finitely many of the an. Hence every open neighbourhood of x
contains all but finitely many of the an. Hence the sequence (an)n∈N converges to x.

⇐: This is trivial, because if every open neighbourhood around x contains all but
finitely many members of some sequence (an)n∈N on A, then certainly every open neigh-
bourhod of x meets A.

(ii) f is continuous at x0 if and only if f(xn) → f(x0) for each sequence (xn) for
which xn → x0.

Also the same proof as for metric spaces.

Let {Un : n ∈ N} be a local basis at x0, with the property that for all n, Un+1 ⊆ Un.
⇒: Suppose that xn → x0. Let V be an open neighbourhood of f(x0). Then f−1(V )

is a neighbourhood of x0, because f is continuous at x0. Because xn → x0, f
−1(V ) contains

all but finitely many of the xn. Hence V contains all but finitely many of the f(xn). So
f(xn) → f(x0).

⇐: Suppose that V is an open neighbourhood of f(x0), and that f−1(V ) is not a
neighbourhood of x0. Then for all n, Un 6⊆ f−1(V ). Let xn ∈ Un \f

−1(V ). Then xn → x0,
but f(xn) /∈ V , so f(xn) does not converge to f(x0).


