
Analytic Topology: Problem sheet 2

1. Suppose that X and Y are topological spaces, A ⊆ X, B ⊆ Y . Prove that A × B =
A×B. Prove that if X and Y are regular, then X × Y is regular.

A×B is closed because its complement, which is equal to X × (Y \B)∪ (X \A)×Y ,
is open. Hence A×B ⊆ A×B.

As for the reverse inclusion, if (x, y) ∈ A×B, if W is an open neighbourhood of (x, y),
then there exist U open in X and V open in Y such that (x, y) ∈ U ×V ⊆ W ; then x ∈ A,
so there exists a point z in U ∩ A, and similarly we can find a point w in V ∩ B; then
(z, w) ∈ W ∩ (A×B). Hence (x, y) ∈ A×B.

Now suppose that X and Y are regular, and that (x, y) is a point of X × Y , W is an
open set in X × Y , and that (x, y) ∈ W .

Then there exist U open in X and V open in Y such that (x, y) ∈ U × V ⊆ W .
Now X is regular so there exists an open set U ′ in X such that x ∈ U ′ ⊆ U ′ ⊆ U .
Similarly there exists V ′ open in Y such that y ∈ V ′ ⊆ V ′ ⊆ V .
Then (x, y) ∈ U ′ × V ′ ⊆ U ′ × V ′ ⊆ U × V ⊆ W .
The proof of regularity of X ×Y is complete once we observe that U ′×V ′ = U ′ × V ′.

2. Prove that a space X is Hausdorff if and only if the diagonal

∆ = {(x, x) ∈ X ×X : x ∈ X}

is closed in X ×X.

⇒: We show that the complement of the diagonal is open.
Suppose that (x, y) /∈ ∆.
Then x 6= y.
Hence, since X is Hausdorff, there exist disjoint open U and V such that x ∈ U ,

y ∈ V .
Then (x, y) ∈ U × V .
We now show that U × V does not meet the diagonal.
For, if (z, w) ∈ ∆ ∩ (U × V ), then (z, w) ∈ ∆, so w = z; and also (z, w) ∈ U × V , so

z ∈ U and w ∈ V . So z ∈ U ∩ V , contradicting disjointness of U and V .
So the complement of the diagonal is open, as required.
⇐: The same argument in reverse. Briefly:
If the diagonal is closed, then its complement is open.
Suppose that x 6= y. Then (x, y) /∈ ∆. Hence since the complement of the diagonal is

open, there exists open W such that (x, y) ∈ W ⊆ (X × Y ) \ ∆. W may be assumed to
have the form U × V for U open in X and V open in Y . Then U and V are disjoint, and
the proof of Hausdorffness is complete.

3. Suppose that X is arbitrary, Y is Hausdorff, and f : X → Y , g : X → Y are both
continuous. Prove that:

(i) {x ∈ X : f(x) = g(x)} is closed in X,

Define h : X → Y × Y by h(x) = (f(x), g(x)).



Then h is continuous.
The diagonal ∆Y in Y is closed, because Y is Hausdorff. So, the inverse image under

h of ∆Y is closed.
Thus {x ∈ X : f(x) = g(x)} is closed.

(ii) if D ⊆ X is dense (that is, D = X), and f |D = g|D (that is, if f(x) = g(x) for
each x ∈ D), then f = g,

If f |D = g|D, then D ⊆ {x ∈ X : f(x) = g(x)}. But {x ∈ X : f(x) = g(x)} is closed,
and D is dense. Hence {x ∈ X : f(x) = g(x)} = X . So f = g.

(iii) the set Gf = {(x, f(x)) : x ∈ X} is closed in X × Y ,

Define k : X × Y → Y × Y by k(x, y) = (f(x), y).
Now Y is Hausdorff, so the diagonal ∆Y is closed.
Thus k−1[∆y] is closed.
But this set is equal to {(x, y) : f(x) = y}, that is, to Gf .

(iv) if Z ⊆ Y and the continuous function h : Y → Z is such that h(y) = y for each
y ∈ Z, then Z is closed in Y . (Such an h is called a retraction.)

In this case, Z = {y ∈ Y : y = h(y)}, and we can apply part (i).

4. X is said to be countably compact if every countable open covering has a finite subcov-
ering. Prove that a T1 space X is countably compact if and only if every infinite subset
has a limit point in X.

⇒: Let A be an infinite subset of X with no limit point. Since any subset of a set
with no limit points also has no limit points, we may assume that A is countable; write A
as {an : n ∈ N}, where all points an are distinct. (The statement that every infinite set has
a countably infinite subset depends on the Axiom of Choice. However, for the purposes of
this course, we are assuming that the Axiom of Choice is true.)

Since A has no limit points, for every point x, x has an open neighbourhood containing
no points of A apart from possibly x itself; since x = an for at most one value of n, there
exists n for which x /∈ {am : m ≥ n}.

Let Un = X \ {am : m ≥ n}.
Then each Un is open; and by the above observation the sets Un cover X . However

there is no finite subcover, since for all n, an /∈
⋃

i≤n Ui.
So there is a countable open cover with no finite subcover, so X is not countably

compact.
⇐: Suppose that X is not countably compact.
Let {Un : n ∈ N} be a countable open cover with no finite subcover.
Since this cover has no finite subcover, we can find, for each natural number n, a point

an such that an /∈
⋃

i≤n Ui.
Now if x ∈ X , then for some n, x ∈ Un.
For all m ≥ n, am /∈ Un.
Also, the set {ai : i ≤ n, ai 6= x} is finite, and therefore closed (remember X is T1).
The open neighbourhood Un \ {ai : i ≤ n, ai 6= x} of x now witnesses that x is not a

limit point of {an : n ∈ N}.
So {an : n ∈ N} is an infinite subset of X with no limit point.



One can simplify the above argument by noting that in a T1 space, x is a limit point
of A if and only if every neighbourhood of x meets infinitely many points of A.

5. Prove that a countably compact, first countable, Hausdorff space is regular.

Suppose that x is a point of a countably compact, first countable, Hausdorff space X .
Let {Un : n ∈ N} be a countable basis at x. We may assume without loss of generality
(since finite intersections of open sets are open) that Un+1 is a strict subset of Un for all
n.

We argue that for all n, there exists m such that Um ⊆ Un. If we can do this, then
we will have proved that the space X is regular.

Suppose that this is not true. Then there exists n such that for all m, Um 6⊆ Un.
We argue, first or all, that

⋂
m∈N

Um = {x}. For, for each point y 6= x, there exists by
Hausdorffness an open set V and a natural number m such that y ∈ V and Um ∩ V = ∅;
so V witnesses that y /∈ Um.

Now for each m, let am be a point of Um \ Un.
Then because

⋂
m∈N

Um \ V = ∅, the set {am : m ∈ N} is infinite.
Because X is countably compact, this infinite set must have a limit point a.
For each m, this limit point must belong to Um, or else the complement of Um is an

open neighbourhood of a meeting only finitely many of the an.
Hence a ∈

⋂
m∈N

Um \ Un, so a is an element of
⋂

m∈N
Um different from x, giving a

contradiction.

This problem can also be solved by adapting the proof that a compact Hausdorff space
is compact.

6. Show that a metric space is Lindelöf if and only if it is separable.

⇒: Suppose that X is Lindelöf and metric.
For each n, let Un be the set of all balls of radius 1/n.
Let {B 1

n

(xn,m) : m ∈ N} be a countable subcover.

We argue that the set {xn,m : n,m ∈ N} is dense.
For, let U be any non-empty open set. Let x be a point and n a natural number such

that B 1

n

(x) ⊆ U .

Now {B 1

n

(xn,m) : m ∈ N} covers X .

So, find m such that x ∈ B 1

n

(xn,m).

Then xn,m ∈ B 1

n

(x) by symmetry of the metric.
So xn,m ∈ U , as required.
⇐: Suppose that X is Lindelöf and separable. Let D be a countable dense set.
Let U be an open cover.
For each d ∈ D and n ∈ N, find an element Ud,n, if there is one, such that B 1

n

(d) ⊆

Ud,n. (This is a use of the Axiom of Choice.)
We argue that {Ud,n : d ∈ D, n ∈ N} is a countable subcover of U.
For, let x ∈ X .
Then x ∈ U for some U ∈ U.
Also U is open, so for some N , x ∈ B 1

N

(x) ⊆ U .

Let n = 2N . Find d ∈ D such that d ∈ B 1

n

(x).



Then x ∈ B 1

n

(d) ⊆ B 1

N

(x) ⊆ U , using symmetry and the triangle inequality.

It follows that Ud,n is defined; and since x ∈ B 1

n

(d), x ∈ Ud,n.

The hypothesis that the space is metric is necessary: there are Lindelöf spaces that
are not separable, and separable spaces that are not Lindelöf.

7. (i) Prove that a family of subsets of a set X is a filter-basis if and only if it is the
basis of some filter on X.

⇒: If B is a filter-basis, then let F = {F ⊆ X : ∃B ∈ BB ⊆ F}.
We prove that F is a filter, for which B is a basis, by checking the conditions. F 6= ∅

because B 6= ∅. ∅ /∈ F because ∅ /∈ B. If F1 and F2 and belong to F, then there exist
elements B1 and B2 of B such that B1 ⊆ F1 and B2 ⊆ F2. Now there exists B3 ∈ B such
that B3 ⊆ B1 ∩B2. Then B3 ⊆ F1 ∩F2, so F1 ∩F2 ∈ F. If F ∈ F and F ⊆ G, then there
exists B ∈ B such that B ⊆ F ; then B ⊆ G so G ∈ F.

⇐: Suppose B is a basis for a filter F.
Since ∅ /∈ F, it follows that ∅ /∈ B. Also, since F 6= ∅, it follows that B 6= ∅.
Now suppose that B1, B2 ∈ B. Then B1, B2 ∈ F. Now F is closed under pairwise

intersections. Hence B1 ∩B2 ∈ F. Hence there exists B3 ∈ B such that B3 ⊆ B1 ∩B2.

This is worth knowing because filter-bases are much easier to deal with than filters.

(ii) Suppose that Nx is the filter of all neighbourhoods of a point x. A filter-basis D
converges to y if U open, U ∋ y implies ∃D ∈ D with D ⊆ U . Prove that f : X → Y is
continuous if and only if, for every x ∈ X, f(Nx) converges to f(x).

Note that if f is not onto, then Y /∈ f(F) so f(F) is not a filter.

⇒: Suppose f is continuous. Let U ∋ f(x) be open. Then since f is continuous,
f−1(U) is open. So f−1(U) ∈ Nx. So U ⊇ f(f−1(U)) ∈ f(Nf ).

⇐: Suppose f(Nx) → f(x). Let U ∋ f(x) be open. Then there exists V ∈ Nx such
that f(V ) ⊆ U . Then V ⊆ f−1(U). So f−1(U) is a neighbourhood of x. This is true for
all x, so f−1(U) is open.

(iii) Prove that the following are equivalent:

(a) X is Hausdorff,
(b) no filter on X converges to more than one point,
(c) if a filter F on X converges to x, then x is the only cluster point of F.

(a)⇒(c): Suppose that F is a filter converging to x. Suppose that y 6= x.
Then because X is Hausdorff, there exist disjoint open U and V such that x ∈ U and

y ∈ V .
Since F→ x, U ∈ F.
Since V is open and V ∩ U = ∅, V ∩ U = ∅.
Hence y /∈ U .
Hence y is not a cluster point of F.
(c)⇒(b): Suppose that F converges to x, and y 6= x. Then by hypothesis, y is not a

cluster point of F. Hence there exists U ∈ F such that y /∈ U . Then X \ U is an open
neighbourhood of y which does not belong to F. Hence F does not converge to y.

(b)⇒(a): Suppose that X is not Hausdorff, and that x and y are distinct points such
that whenever U ∋ x and V ∋ y are open, then U ∩ V 6= ∅.



It is easy to check that the set F of all U ∩ V such that U is a neighbourhood of x
and V is a neighbourhood of y, is a filter, and that it converges to both x and y.

8. Suppose that f is a function from X onto Y , and that x ∈ X. Prove that f is continuous
at x if and only if, for every ultrafilter U on X which converges to x, the ultrafilter f(U)
converges to f(x).

We mentioned the Axiom of Choice earlier. The construction of free ultrafilters de-
pends on the Axiom of Choice (specifically, on the Boolean Prime Ideal Theorem). We
are, for the purposes of this course, regarding the Axiom of Choice as being true.

This theorem of course parallels the one about convergence in metric spaces earlier in
the previous sheet.

⇒: Suppose that f is continuous at x, and that U converges to x.
Let V be an open neighbourhood of f(x). Then, because f is continuous, f−1(V ) is

an open neighbourhood of x. Since U converges to x, f−1(V ) ∈ U. Hence V = f [f−1(V )]
belongs to f(U).

So f(U) converges to f(x).
⇐: Suppose that f is not continuous at x. Let V be an open neighbourhood of f(x)

such that f−1(V ) is not a neighbourhood of x.
Then for every neighbourhood U of x, U 6⊆ f−1(V ), so U \ f−1(V ) 6= ∅.
We can now check that the set of all U \ f−1(V ), for U a neighbourhood of x, is a

filter basis.
For, X is a neighbourhood of x, so X \ f−1(V ) ∈ B, so B 6= ∅.
∅ /∈ B by definition.
If B1, B2 ∈ B, say B1 = U1 \ f−1(V ) and B2 = U2 \ f−1(V ), then B1 ∩ B2 =

U1 ∩ U2 \ f
−1(V ) ∈ B.

Let F be the filter whose basis is B.
Let U be some ultrafilter refining F.
We can now check that U→ x.
Now if U is a neighbourhood of x, then f(U \f−1(V )) = f(U)\V , which is a member

of f(U).
Hence V is not a member of f(U).
So f(U) does not converge to f(x).

9. Suppose M,N,X, Y are topological spaces, πX : X × Y → X is the usual projection.

It will be helpful to draw pictures for this question.

(i) Prove that f : M → N is closed (ie. f(C) is closed in N , for each C closed in M)
if and only if, for each n ∈ N and each open U ⊇ f−1(n), there is an open V ∋ n such
that f−1(V ) ⊆ U .

⇒: Suppose that f is closed, that U is open in M , that n ∈ N , and that U ⊇ f−1(n).
Then M \U is closed. Since f is a closed map, f(M \U) is closed. Since U ⊇ f−1(n),

n /∈ f(M \ U). Hence V = N \ f(M \ U) is an open set containing n. Now f−1(V ) =
f−1(N \ f(M \ U)) ⊆ M \ (M \ U) = U , as required.

⇐: Let C be a closed subset of M . We show that f(C) is closed by showing that its
complement is open.



Suppose that n ∈ N \ f(C).
Let U = M \ C. Then U is open, and U ⊇ f−1(n).
Let V be an open set containing n such that f−1(V ) ⊆ U .
Then f−1(V ) ∩ C = ∅.
Hence V ∩ f(C) = ∅.
Hence V is an open neighbourhood of n missing f(C).
So the complement of f(C) is open, so f(C) is closed.

(ii) If Y is compact, prove that πX is closed.

We use the previous part.
Suppose that x ∈ X , that U ⊆ X × Y is open, and that πX

−1(x) ⊆ U .
Then for each y ∈ Y , there exist open Vy in X and Wy in Y such that

(x, y) ∈ Vy ×Wy ⊆ U.

Note that x ∈ Vy and y ∈ Wy.
Then the Wy cover Y . Since Y is compact, there is a finite subcover {Wyi

: i < n}.
Now let V =

⋂
i<n Vyi

.
Then V is an open neighbourhood of x.
Also,

πX
−1(V ) = V × Y =

⋃

i<n

V ×Wyi
⊆

⋃

i<n

Vyi
×Wyi

⊆ U.

Hence πX is closed.

(iii) If Y is compact Hausdorff, prove that g : X → Y is continuous if and only if its
graph is closed in X × Y .

We have already done the ⇒ direction on a previous sheet.
⇐: We show that if the graph of g is a closed set, then the inverse image under g of

any closed set is closed.
Let C be closed in Y .
Then X × C is closed in X × Y .
Hence Gg ∩ (X × C) is closed in X × Y .
Now Y is compact, so πX is a closed map.
Hence πX(Gg ∩ (X × C)) is a closed subset of X .
Now, x ∈ πX(Gg∩(X×C)) if and only if there exists y such that (x, y) ∈ Gg∩(X×C).

Now (x, y) ∈ Gg if and only if y = g(x), and (x, y) ∈ X × C if and only if y ∈ C.
So x ∈ πX(Gg ∩ (X × C)) if and only if f(x) ∈ C.
So πX(Gg ∩ (X × C)) = f−1(C).
Hence f−1(C) is closed, as required.
So f is continuous.


