Analytic Topology: Problem sheet 3

1. If $\{X_{\lambda} : \lambda \in \Lambda\}$ is a family of non-empty topological spaces. Show that $\prod_{\lambda \in \Lambda} X_{\lambda}$ is Hausdorff in the Tychonoff topology if and only if each X_{λ} is Hausdorff.

2. Suppose that $\{X_{\lambda} : \lambda \in \Lambda\}$ is a family of non-empty topological spaces and that $\prod_{\lambda \in \Lambda} X_{\lambda}$ is given the Tychonoff topology. Fix a point $f \in \prod_{\lambda \in \Lambda} X_{\lambda}$ and, for any fixed $\mu \in \Lambda$, let Y_{μ} be that subset defined by

$$Y_{\mu} = \{g : g(\lambda) = f(\lambda) \text{ whenever } \lambda \neq \mu\}.$$

Prove that the restriction of the projection mapping π_{μ} to Y_{μ} is a homeomorphism from Y_{μ} to X_{μ} .

3. Suppose that for each $\lambda \in \Lambda$, X_{λ} is non-empty and connected. For any given $f \in \prod_{\lambda \in \Lambda} X_{\lambda}$, show that

$$D = \{g : g(\lambda) = f(\lambda) \text{ for all but finitely many } \lambda\}$$

is connected. Show that $\prod_{\lambda \in \Lambda} X_{\lambda}$ is connected, in the Tychonoff topology.

4. Find the generalization of Tychonoff's Theorem to locally compact spaces, and prove it.

5. Suppose that $\{X_{\lambda} : \lambda \in \Lambda\}$ is a family of non-empty topological spaces. We define the *box topology* on the cartesian product $\prod_{\lambda \in \Lambda} X_{\lambda}$ to be the topology with basis consisting of *all* products $\prod_{\lambda \in \Lambda} T_{\lambda}$, where each T_{λ} is open in X_{λ} .

Show that, in the box topology, a product of infinitely many Hausdorff spaces, each of which has at least two points, is not compact.

[Hint: consider the case where each X_{λ} has exactly two points. What is the box topology like then?]

6. (Optional) For each natural number n, let $X_n = [0,1]$. In the cartesian product $\prod_{n \in \mathbb{N}} X_n$, let

$$U = \left\{g : (\exists r > 0)(\forall n) \left(g(n) < \frac{r}{n}\right)\right\}.$$

Show that, in the box topology, U is clopen (i.e. closed and open). Deduce that a box product of connected spaces need not be connected.

7. If X is a locally compact Hausdorff space, show that X has a basis of open sets with compact closure.

8. Prove that a locally compact subset A of a Hausdorff space X is of the form $V \cap F$, where V is open and F is closed in X. [Hint: what might F be?]

9. Prove that the following properties of a locally compact Hausdorff space X are equivalent.

(i) X is σ -compact (that is, X is a union of a countable family of compact subsets),

(ii) X can be represented as $X = \bigcup_{i=1}^{\infty} U_i$, where each U_i is an open set with compact closure, and $\overline{U_i} \subseteq U_{i+1}$ for each $i \in \mathbb{N}$,

(iii) X is Lindelöf.

10. Suppose that f is a proper mapping from X onto Y. Suppose $U \subseteq X$ is open. Defining $f^*(U) = Y \setminus f(X \setminus U)$, show that $f^*(U)$ is open, that $f^*(U) \subseteq f(U)$; and that $f^{-1}(A) \subseteq U$ implies $A \subseteq f^*(U)$. Prove that:

(i) if X is Hausdorff (respectively regular), then Y is Hausdorff (respectively regular).

(ii) if Y is Lindelöf (respectively countably compact), then X is Lindelöf (respectively countably compact).

(iii) Assuming X to be Hausdorff, X is locally compact iff Y is.

11. Suppose \mathscr{U} is an ultrafilter on a (non-empty) set X. We say that \mathscr{U} is fixed, or is a principal ultrafilter, if $\bigcap_{U \in \mathscr{U}} U \neq \emptyset$; otherwise it is free.

(i) Show that if \mathscr{U} is fixed, then it has the form $\{U \subseteq X : x \in U\}$, for some $x \in X$. Deduce that it has a basis consisting of one set.

(ii) Show that if \mathscr{U} is free, then it does not have a *countable* basis.