
Analytic Topology: Problem sheet 3

1. If {Xλ : λ ∈ Λ} is a family of non-empty topological spaces. Show that
∏

λ∈Λ
Xλ is

Hausdorff in the Tychonoff topology if and only if each Xλ is Hausdorff.

2. Suppose that {Xλ : λ ∈ Λ} is a family of non-empty topological spaces and that
∏

λ∈Λ
Xλ is given the Tychonoff topology. Fix a point f ∈

∏

λ∈Λ
Xλ and, for any fixed

µ ∈ Λ, let Yµ be that subset defined by

Yµ = {g : g(λ) = f(λ) whenever λ 6= µ}.

Prove that the restriction of the projection mapping πµ to Yµ is a homeomorphism from
Yµ to Xµ.

3. Suppose that for each λ ∈ Λ, Xλ is non-empty and connected. For any given f ∈
∏

λ∈Λ
Xλ, show that

D = {g : g(λ) = f(λ) for all but finitely many λ}

is connected. Show that
∏

λ∈Λ
Xλ is connected, in the Tychonoff topology.

4. Find the generalization of Tychonoff’s Theorem to locally compact spaces, and prove
it.

5. Suppose that {Xλ : λ ∈ Λ} is a family of non-empty topological spaces. We define the
box topology on the cartesian product

∏

λ∈Λ
Xλ to be the topology with basis consisting of

all products
∏

λ∈Λ
Tλ, where each Tλ is open in Xλ.

Show that, in the box topology, a product of infinitely many Hausdorff spaces, each
of which has at least two points, is not compact.

[Hint: consider the case where each Xλ has exactly two points. What is the box
topology like then?]

6. (Optional) For each natural number n, let Xn = [0, 1]. In the cartesian product
∏

n∈N
Xn, let

U =
{

g : (∃r > 0)(∀n)
(

g(n) <
r

n

)}

.

Show that, in the box topology, U is clopen (ie. closed and open). Deduce that a box
product of connected spaces need not be connected.

7. If X is a locally compact Hausdorff space, show that X has a basis of open sets with
compact closure.

8. Prove that a locally compact subset A of a Hausdorff space X is of the form V ∩ F ,
where V is open and F is closed in X . [Hint: what might F be?]

9. Prove that the following properties of a locally compact Hausdorff space X are equiv-
alent.

(i) X is σ-compact (that is, X is a union of a countable family of compact subsets),



(ii) X can be represented as X =

∞
⋃

i=1

Ui, where each Ui is an open set with compact

closure, and Ui ⊆ Ui+1 for each i ∈ N,

(iii) X is Lindelöf.

10. Suppose that f is a proper mapping from X onto Y . Suppose U ⊆ X is open. Defining
f∗(U) = Y \f(X \U), show that f∗(U) is open, that f∗(U) ⊆ f(U); and that f−1(A) ⊆ U

implies A ⊆ f∗(U). Prove that:

(i) if X is Hausdorff (respectively regular), then Y is Hausdorff (respectively regular).

(ii) if Y is Lindelöf (respectively countably compact), then X is Lindelöf (respectively
countably compact).

(iii) Assuming X to be Hausdorff, X is locally compact iff Y is.

11. Suppose U is an ultrafilter on a (non-empty) set X . We say that U is fixed, or is a
principal ultrafilter, if

⋂

U∈U
U 6= ∅; otherwise it is free.

(i) Show that if U is fixed, then it has the form {U ⊆ X : x ∈ U}, for some x ∈ X .
Deduce that it has a basis consisting of one set.

(ii) Show that if U is free, then it does not have a countable basis.


