Analytic Topology: Problem sheet 3

1. Suppose that {Xy : X € A} is a family of non-empty topological spaces. Show that
[Txca X is Hausdorff in the Tychonoff topology if and only if each Xy is Hausdorff.

=: Suppose that a and b are different points of X.

Choose points « and y of [] ., X, such that for all u # X, z(p) = y(p), and z(A\) = a
and y(\) = b.

Then there exist disjoint open sets U and V in the product such that z € U and
yeV.

Without loss of generality U and V' are basic open sets || uen Ux and I
tively.

But then, UNV = @ implies that UANV)\ = &, since for u # A, x(p) = y(pn) € U,NV,.

So Uy and V), are disjoint open sets in X containing a and b respectively.

<: Suppose that x and y are distinct points of the Tychonoff product.

Then for some A, z(\) # y(A).

Now X is Hausdorff. So let U and V' be disjoint open sets in X containing z(\) and
y(A) respectively.

Then U X[ ,cn izn Xpand VXT] ,cn 2\ X, are disjoint sets, open in the Tychonoff
topology, containing = and y respectively.
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2. Suppose that { X : X € A} is a family of non-empty topological spaces and that T ], X
is given the Tychonoff topology. Fix a point f € [],cp X and, for any fived p € A, let Y,
be that subset defined by

Y, ={g:9(\) = f(\) whenever X # u}.

Prove that the restriction of the projection mapping 7, to Y, is a homeomorphism from
Y, to X,,.
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If U is open in Xy, then 7, 1 (U) = (U X [Thsn XA> NY, is open in Y),.
If V' is open in Y),, then for all g € Y),, there exists a basic open set [[, Uy such that

g € (I1,Ux) CV. Then h € ([[,Ux) if and only if h(u) € U,. Now U, C m,(V), so we
see that m,(V) is open.

3. Suppose that for each A € A, X, is non-empty and connected. For any given f &
[Laca X, show that

D ={g:g(\) = f(N\) for all but finitely many \}

is connected. Show that [[c, X is connected, in the Tychonoff topology.

If F'is a finite subset of A, define Yr to be {g : Vu ¢ Fg(u) = f(n)}. Then, as
in the previous question, Yr is homeomorphic to the finite product ] peF X and so is
connected.

Also, D is the union of all the Y, and all the Yz contain the point f.

So D is connected.



Now [Tyea Xa =D, and so [], ., X is connected.

To see that [] o Xa = D, let [T,ca Ux be a basic open set; suppose that Uy = X
for all A not belonging to some finite set F'.

Define g so that g(A) = f(A) if A ¢ F, and if A € F, then g(\) € U,.

Then g € D N[ cp Ux.

4. Find the generalization of Tychonoff’s Theorem to locally compact spaces, and prove it.

The theorem is: a product [], ., Xy is locally compact if all the spaces X are locally
compact, and all but finitely many of them are compact.

The proof: Suppose that X is compact for all A not belonging to some finite set F'.

We show that each point has a compact neighbourhood.

Let f be any point of [[,., Xx. For A € F, define Uy to be an open subset of X,
and K to be a compact subset of Xy, such that f(\) € Uy C K.

For A ¢ F, define Uy = K = X, observing that this set is both open and compact.

Then if we let U =[], Ux, then U is open, and if we let K =[], K, then K is
compact, and f € U C K, as required.

5. Suppose that { X : A € A} is a family of non-empty topological spaces. Show that, in
the box topology, a product of infinitely many Hausdorff spaces, each of which has at least
two points, s not compact.

Following the hint, we note that a box product of discrete two-point spaces is an
infinite (in fact uncountable) discrete space, which is definitely not compact.

In more generality, let x5 o and 1 be distinct elements of X . Let Uy o = X\ \{za1},
and let Uy 1 = Xx \ {0}

For any function f : A — {0, 1}, define zy to be the function on A taking A to x f(x),
and define Uy to be [ cp Un 500

Then z, belongs to Uy if and only if g = f.

Also the set {Uf|f : A — {0,1}} is an open cover of [T, ., Xa.

However it has no proper subcover at all, and hence a fortiori it has no finite subcover.

6. (Optional) For each natural number n, let X, = [0,1]. In the cartesian product
[Len Xn, let

U= {g . (3r > 0)(¥n) (g(n) < f)}
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Show that, in the box topology, U is clopen (ie. closed and open). Deduce that a box product
of connected spaces need not be connected.

We first show that U is open. Suppose that g € U. Let r > 0 be such that for all n,
g(n) < =.

For each n, let V;, = [0,1] N (=00, =), and let V =[], oy V-

Then V isopen, ge V,and V C U.

So U is open.

Now we argue that U is closed.

Suppose that f € U.

For each n € N, let W,, = [0,1] N (f(n) — L, f(n) + 1).

Let W = [],,en Wh-



Then f € W and W is open.

So WnNU # 2.

Let ge WNU.

Then there exists 7 > 0 such that for all n, g(n) <

Then for all n, f(n) < =L,

Hence f € U.

Thus U is closed.

Now U is both closed and open in the box product, and is also a proper subset of
[1,eny Xn (since the function n + 1 is not in U), so the box product [], nXn is not
connnected.
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7. If X is a locally compact Hausdorff space, show that X has a basis of open sets with
compact closure.

For each x € X, let U, be open, and K, be compact, such that x € U, C K.

Let % be the set of all open subsets V of X that for some z, V C U,.

Firstly 4 is a basis, for if x is any point of X and U > x is open, then U N U, is en
element of Z containing x and contained in U.

Now if V € %, then for some x, V C U,, and U, C K,. Now X is Hausdorff, so K, is
closed. Hence V C K,. But now V is a closed subset of a compact set, so V is compact.

8. Prove that a locally compact subset A of a Hausdorff space X 1is of the form V N F,
where V' is open and F' is closed in X.

Let F = A.

For each = € A, let U, and K, be subsets of A witnessing local compactness, that is,
such that x € U, C K,, U, is open in A, and K, is compact.

Now U, is open in A, so there exists V. open in X such that U, = ANV,.

Also K, is compact, so because X is Hausdorff, K, is closed. So in the topology of
X, K, is closed, contains U,, and is contained in A.

Let V = J,c4 Vo- We argue that VN F = A.

Clearly ACV NF.

As for the reverse inclusion, suppose that y € VN F. Then y € V', so y € V,, for some
z €A Henceye V,NF =V, NA.

We argue that in fact, y € V, N A. For, let W be any open set containing y. Then
W NV, is also an open set containing y. Since y € A, W NV, must meet A; that is,
(WNV,)NA=# 2. Rebracketing, W N (V, N A) # &, as required.

Hence y € V, N A = U,. But K, is closed and U, C K, so U, C K,.

Hence y € K.

Hence y € A, as required.

9. Prove that the following properties of a locally compact Hausdorff space X are equiva-
lent.

(i) X is o-compact (that is, X is a union of a countable family of compact subsets),

o0
(ii) X can be represented as X = U U;, where each U; is an open set with compact
i=1
closure, and U; C U; 41 for each i € N;



(iii) X s Lindelof.
(i)=(ii): Suppose K; is compact for each natural number ¢, and that X = (J, . K.

We define the open sets U; by recursion, so U; is compact, U; C U; 11 and K; C U;;
this last condition ensures that X = J,y Us.

If i =1, let L; = &, and otherwise let L; = U;_1.

Then L; is compact; hence so is L; U K.

For each x € L; U K;, let V. be an open set with compact closure. Let {ij 1j<n}
be a finite subcover. Let U; = Uj <n Va;- Certainly U; is open and contains both U;,_1 and
K;. Also, | i<n V, is a finite union of closed compact sets containing all of U;, so is closed
and compact. Hence U; has compact closure.

(ii)=-(iil): Let # be an open cover of X. Let ¥; be a finite subset of ¥ which covers
U;.

Then (U, ey

(iii)=(i): For each z € X, let U, be an open set such that € U, and U, is compact.

Let {U,, : i € N} be a countable subcover.

Then {U,, : i € N} is a countable cover of X by compact sets.

¥; is a countable subset of ¥ which covers all of X.

10. Suppose that f is a proper mapping from X onto Y. Suppose U C X is open. Defining
f*(U) =Y\ f(X\U), show that f*(U) is open, that f*(U) C f(U); and that f~1(A) CU
implies A C f*(U).

f*(U) is known as the small image of U under f.

To show that f*(U) is open, observe that X \U is closed; f is a closed map, so f(X\U)
is closed; now f*(U) is open.

That f*(U) C f(U), and that f=1(A) C U implies A C f*(U), are easy set algebra.

Prove that:

(i) if X is Hausdorff (respectively reqular), then Y is Hausdorff (respectively regular).

Suppose x and y are distinct points of Y.

Then f~!(x) and f~!(y) are disjoint compact subsets of X, which, in a Hausdorff
space, may be separated by disjoint open sets U and V.

Then f*(U) and f*(V') are disjoint open sets containing x and y respectively.

The proof for regularity is similar.

(ii) if Y is Lindeldf (respectively countably compact), then X is Lindeldf (respectively
countably compact).

We do the argument for Lindel6fness; the argument for countable compactness is very
similar.

Let % be an open cover of X. For each point y of Y, f~!(y) is compact, so there is a
finite subset %, of % covering it. Let U, = f*(|J %,); then U, is an open set containing y.

Thus {U, : y € Y} is an open cover of Y.

So there is a countable subcover {U,, :n € N} of Y.

Then |, cy %y, is a countable subcover of %, completing the argument.

(iii) Assuming X to be Hausdorff, X is locally compact iff Y is.



=: Suppose that y € Y. Then f~1(y) is compact because f is proper. For each point
x of f~Y(y), let U, and K, be neighbourhoods of x such that z € U, C K, U, is open,
and K, is compact. Let {Uy,, : i < n} be a finite cover of f~*(y). Let U = U,_,, Us,
and K = {J;.,, Kz, Then f~'(y) C U C K, U is open, and K is compact. Then
y e f*(U) C f(K), f*(U) is open, and f(K) is compact.

<: Suppose that x € X. Then f(x) € Y. Find U open and K compact such that
f(x) eUCK. Thenz € f~Y(U) C f~Y(K), and f~1(U) is open and f~1(K) is compact.

11. Suppose % is an ultrafilter on a (non-empty) set X. We say that % is fixed, or is a
principal ultrafilter, if (\;,c4 U # 9; otherwise it is free.

(i) Show that if % is fized, then it has the form {U C X : x € U}, for some x € X.
Deduce that it has a basis consisting of one set.

Suppose that z € (¢4 U.

Because % is an ultrafilter, exactly one of {z} and X \ {z} belongs to Z X \ {z}
cannot, since & € (¢4 U, so {z} € %

But then {z} is a subset of every element of %, and since % is closed under D,
%={U:U > xz}. Now {{z}} is a basis for % consisting of exactly one element.

(ii) Show that if % is free, then it does not have a countable bas

Suppose that % is an free ultrafilter, and that {U,, : n € N} is a countable basis for it.

Because ultrafilters are closed under finite intersections, we may assume that U,,; C
U, for all n, and because % is free, we may assume that the inclusions are strict.

Let A= UkEN Usp \ Usfy1-

Then neither A nor X \ A contains any of the sets U,,. Since {U,, : n € N} is a basis for
%, this means that neither A nor X \ A belongs to %. But then % cannot be an ultrafilter.



