
Analytic Topology: Problem sheet 3

1. Suppose that {Xλ : λ ∈ Λ} is a family of non-empty topological spaces. Show that
∏

λ∈Λ Xλ is Hausdorff in the Tychonoff topology if and only if each Xλ is Hausdorff.

⇒: Suppose that a and b are different points of Xλ.
Choose points x and y of

∏

µ∈Λ Xµ such that for all µ 6= λ, x(µ) = y(µ), and x(λ) = a
and y(λ) = b.

Then there exist disjoint open sets U and V in the product such that x ∈ U and
y ∈ V .

Without loss of generality U and V are basic open sets
∏

µ∈Λ Uλ and
∏

µ∈Λ Vλ respec-
tively.

But then, U∩V = ∅ implies that Uλ∩Vλ = ∅, since for µ 6= λ, x(µ) = y(µ) ∈ Uµ∩Vµ.
So Uλ and Vλ are disjoint open sets in Xλ containing a and b respectively.
⇐: Suppose that x and y are distinct points of the Tychonoff product.
Then for some λ, x(λ) 6= y(λ).
Now Xλ is Hausdorff. So let U and V be disjoint open sets in Xλ containing x(λ) and

y(λ) respectively.
Then U×

∏

µ∈Λ, µ6=λ Xµ and V ×
∏

µ∈Λ, µ6=λ Xµ are disjoint sets, open in the Tychonoff
topology, containing x and y respectively.

2. Suppose that {Xλ : λ ∈ Λ} is a family of non-empty topological spaces and that
∏

λ∈Λ Xλ

is given the Tychonoff topology. Fix a point f ∈
∏

λ∈Λ Xλ and, for any fixed µ ∈ Λ, let Yµ

be that subset defined by

Yµ = {g : g(λ) = f(λ) whenever λ 6= µ}.

Prove that the restriction of the projection mapping πµ to Yµ is a homeomorphism from
Yµ to Xµ.

If U is open in Xλ, then πµ
−1(U) =

(

U ×
∏

λ6=µ Xλ

)

∩ Yµ is open in Yµ.

If V is open in Yµ, then for all g ∈ Yµ, there exists a basic open set
∏

λ Uλ such that
g ∈ (

∏

λ Uλ) ⊆ V . Then h ∈ (
∏

λ Uλ) if and only if h(µ) ∈ Uµ. Now Uµ ⊆ πµ(V ), so we
see that πµ(V ) is open.

3. Suppose that for each λ ∈ Λ, Xλ is non-empty and connected. For any given f ∈
∏

λ∈Λ Xλ, show that

D = {g : g(λ) = f(λ) for all but finitely many λ}

is connected. Show that
∏

λ∈Λ Xλ is connected, in the Tychonoff topology.

If F is a finite subset of Λ, define YF to be {g : ∀µ /∈ F g(µ) = f(µ)}. Then, as
in the previous question, YF is homeomorphic to the finite product

∏

µ∈F Xµ, and so is
connected.

Also, D is the union of all the YF , and all the YF contain the point f .
So D is connected.



Now
∏

λ∈Λ Xλ = D, and so
∏

λ∈Λ Xλ is connected.

To see that
∏

λ∈Λ Xλ = D, let
∏

λ∈Λ Uλ be a basic open set; suppose that Uλ = Xλ

for all λ not belonging to some finite set F .
Define g so that g(λ) = f(λ) if λ /∈ F , and if λ ∈ F , then g(λ) ∈ Uλ.
Then g ∈ D ∩

∏

λ∈Λ Uλ.

4. Find the generalization of Tychonoff’s Theorem to locally compact spaces, and prove it.

The theorem is: a product
∏

λ∈Λ Xλ is locally compact if all the spaces Xλ are locally
compact, and all but finitely many of them are compact.

The proof: Suppose that Xλ is compact for all λ not belonging to some finite set F .
We show that each point has a compact neighbourhood.
Let f be any point of

∏

λ∈Λ Xλ. For λ ∈ F , define Uλ to be an open subset of Xλ,
and Kλ to be a compact subset of Xλ, such that f(λ) ∈ Uλ ⊆ Kλ.

For λ /∈ F , define Uλ = Kλ = Xλ, observing that this set is both open and compact.
Then if we let U =

∏

λ∈Λ Uλ, then U is open, and if we let K =
∏

λ∈Λ Kλ, then K is
compact, and f ∈ U ⊆ K, as required.

5. Suppose that {Xλ : λ ∈ Λ} is a family of non-empty topological spaces. Show that, in
the box topology, a product of infinitely many Hausdorff spaces, each of which has at least
two points, is not compact.

Following the hint, we note that a box product of discrete two-point spaces is an
infinite (in fact uncountable) discrete space, which is definitely not compact.

In more generality, let xλ,0 and xλ,1 be distinct elements ofXλ. Let Uλ,0 = Xλ\{xλ,1},
and let Uλ,1 = Xλ \ {xλ,0}.

For any function f : Λ → {0, 1}, define xf to be the function on Λ taking λ to xλ,f(λ),
and define Uf to be

∏

λ∈Λ Uλ,f(λ).
Then xg belongs to Uf if and only if g = f .
Also the set {Uf |f : Λ → {0, 1}} is an open cover of

∏

λ∈Λ Xλ.
However it has no proper subcover at all, and hence a fortiori it has no finite subcover.

6. (Optional) For each natural number n, let Xn = [0, 1]. In the cartesian product
∏

n∈N
Xn, let

U =
{

g : (∃r > 0)(∀n)
(

g(n) <
r

n

)}

.

Show that, in the box topology, U is clopen (ie. closed and open). Deduce that a box product
of connected spaces need not be connected.

We first show that U is open. Suppose that g ∈ U . Let r > 0 be such that for all n,
g(n) < r

n
.

For each n, let Vn = [0, 1] ∩ (−∞, r
n
), and let V =

∏

n∈N
Vn.

Then V is open, g ∈ V , and V ⊆ U .
So U is open.
Now we argue that U is closed.
Suppose that f ∈ U .
For each n ∈ N, let Wn = [0, 1] ∩ (f(n)− 1

n
, f(n) + 1

n
).

Let W =
∏

n∈N
Wn.



Then f ∈ W and W is open.
So W ∩ U 6= ∅.
Let g ∈ W ∩ U .
Then there exists r > 0 such that for all n, g(n) < r

n
.

Then for all n, f(n) < r+1
n

.
Hence f ∈ U .
Thus U is closed.
Now U is both closed and open in the box product, and is also a proper subset of

∏

n∈N
Xn (since the function n 7→ 1 is not in U), so the box product

∏

n∈N
Xn is not

connnected.

7. If X is a locally compact Hausdorff space, show that X has a basis of open sets with
compact closure.

For each x ∈ X , let Ux be open, and Kx be compact, such that x ∈ Ux ⊆ Kx.
Let B be the set of all open subsets V of X that for some x, V ⊆ Ux.
Firstly B is a basis, for if x is any point of X and U ∋ x is open, then U ∩ Ux is en

element of B containing x and contained in U .
Now if V ∈ B, then for some x, V ⊆ Ux, and Ux ⊆ Kx. Now X is Hausdorff, so Kx is

closed. Hence V ⊆ Kx. But now V is a closed subset of a compact set, so V is compact.

8. Prove that a locally compact subset A of a Hausdorff space X is of the form V ∩ F ,
where V is open and F is closed in X.

Let F = A.
For each x ∈ A, let Ux and Kx be subsets of A witnessing local compactness, that is,

such that x ∈ Ux ⊆ Kx, Ux is open in A, and Kx is compact.
Now Ux is open in A, so there exists Vx open in X such that Ux = A ∩ Vx.
Also Kx is compact, so because X is Hausdorff, Kx is closed. So in the topology of

X , Kx is closed, contains Ux, and is contained in A.
Let V =

⋃

x∈A Vx. We argue that V ∩ F = A.
Clearly A ⊆ V ∩ F .
As for the reverse inclusion, suppose that y ∈ V ∩F . Then y ∈ V , so y ∈ Vx for some

x ∈ A. Hence y ∈ Vx ∩ F = Vx ∩A.
We argue that in fact, y ∈ Vx ∩ A. For, let W be any open set containing y. Then

W ∩ Vx is also an open set containing y. Since y ∈ A, W ∩ Vx must meet A; that is,
(W ∩ Vx) ∩A 6= ∅. Rebracketing, W ∩ (Vx ∩A) 6= ∅, as required.

Hence y ∈ Vx ∩ A = Ux. But Kx is closed and Ux ⊆ Kx, so Ux ⊆ Kx.
Hence y ∈ Kx.
Hence y ∈ A, as required.

9. Prove that the following properties of a locally compact Hausdorff space X are equiva-
lent.

(i) X is σ-compact (that is, X is a union of a countable family of compact subsets),

(ii) X can be represented as X =

∞
⋃

i=1

Ui, where each Ui is an open set with compact

closure, and Ui ⊆ Ui+1 for each i ∈ N;



(iii) X is Lindelöf.

(i)⇒(ii): Suppose Ki is compact for each natural number i, and that X =
⋃

i∈N
Ki.

We define the open sets Ui by recursion, so Ui is compact, Ui ⊆ Ui+1 and Ki ⊆ Ui;
this last condition ensures that X =

⋃

i∈N
Ui.

If i = 1, let Li = ∅, and otherwise let Li = Ui−1.

Then Li is compact; hence so is Li ∪Ki.

For each x ∈ Li ∪Ki, let Vx be an open set with compact closure. Let {Vxj
: j < n}

be a finite subcover. Let Ui =
⋃

j<n Vxj
. Certainly Ui is open and contains both Ui−1 and

Ki. Also,
⋃

j<n Vxj
is a finite union of closed compact sets containing all of Ui, so is closed

and compact. Hence Ui has compact closure.

(ii)⇒(iii): Let V be an open cover of X . Let Vi be a finite subset of V which covers
Ui.

Then
⋃

i∈N
Vi is a countable subset of V which covers all of X .

(iii)⇒(i): For each x ∈ X , let Ux be an open set such that x ∈ Ux and Ux is compact.

Let {Uxi
: i ∈ N} be a countable subcover.

Then {Uxi
: i ∈ N} is a countable cover of X by compact sets.

10. Suppose that f is a proper mapping from X onto Y . Suppose U ⊆ X is open. Defining
f∗(U) = Y \ f(X \U), show that f∗(U) is open, that f∗(U) ⊆ f(U); and that f−1(A) ⊆ U
implies A ⊆ f∗(U).

f∗(U) is known as the small image of U under f .

To show that f∗(U) is open, observe that X\U is closed; f is a closed map, so f(X\U)
is closed; now f∗(U) is open.

That f∗(U) ⊆ f(U), and that f−1(A) ⊆ U implies A ⊆ f∗(U), are easy set algebra.

Prove that:

(i) if X is Hausdorff (respectively regular), then Y is Hausdorff (respectively regular).

Suppose x and y are distinct points of Y .

Then f−1(x) and f−1(y) are disjoint compact subsets of X , which, in a Hausdorff
space, may be separated by disjoint open sets U and V .

Then f∗(U) and f∗(V ) are disjoint open sets containing x and y respectively.

The proof for regularity is similar.

(ii) if Y is Lindelöf (respectively countably compact), then X is Lindelöf (respectively
countably compact).

We do the argument for Lindelöfness; the argument for countable compactness is very
similar.

Let U be an open cover of X . For each point y of Y , f−1(y) is compact, so there is a
finite subset Uy of U covering it. Let Uy = f∗(

⋃

Uy); then Uy is an open set containing y.

Thus {Uy : y ∈ Y } is an open cover of Y .

So there is a countable subcover {Uyn
: n ∈ N} of Y .

Then
⋃

n∈N
Uyn

is a countable subcover of U, completing the argument.

(iii) Assuming X to be Hausdorff, X is locally compact iff Y is.



⇒: Suppose that y ∈ Y . Then f−1(y) is compact because f is proper. For each point
x of f−1(y), let Ux and Kx be neighbourhoods of x such that x ∈ Ux ⊆ Kx, Ux is open,
and Kx is compact. Let {Uxi

: i < n} be a finite cover of f−1(y). Let U =
⋃

i<n Uxi

and K =
⋃

i<n Kxi
. Then f−1(y) ⊆ U ⊆ K, U is open, and K is compact. Then

y ∈ f∗(U) ⊆ f(K), f∗(U) is open, and f(K) is compact.
⇐: Suppose that x ∈ X . Then f(x) ∈ Y . Find U open and K compact such that

f(x) ∈ U ⊆ K. Then x ∈ f−1(U) ⊆ f−1(K), and f−1(U) is open and f−1(K) is compact.

11. Suppose U is an ultrafilter on a (non-empty) set X. We say that U is fixed, or is a
principal ultrafilter, if

⋂

U∈U U 6= ∅; otherwise it is free.

(i) Show that if U is fixed, then it has the form {U ⊆ X : x ∈ U}, for some x ∈ X.
Deduce that it has a basis consisting of one set.

Suppose that x ∈
⋂

U∈U U .
Because U is an ultrafilter, exactly one of {x} and X \ {x} belongs to U. X \ {x}

cannot, since x ∈
⋂

U∈U U , so {x} ∈ U.
But then {x} is a subset of every element of U, and since U is closed under ⊇,

U = {U : U ∋ x}. Now {{x}} is a basis for U consisting of exactly one element.

(ii) Show that if U is free, then it does not have a countable bas

Suppose that U is an free ultrafilter, and that {Un : n ∈ N} is a countable basis for it.
Because ultrafilters are closed under finite intersections, we may assume that Un+1 ⊆

Un for all n, and because U is free, we may assume that the inclusions are strict.
Let A =

⋃

k∈N
U2k \ U2k+1.

Then neither A nor X \A contains any of the sets Un. Since {Un : n ∈ N} is a basis for
U, this means that neither A nor X \A belongs to U. But then U cannot be an ultrafilter.


