
Analytic Topology: Problem sheet 4

The beginning of this sheet concerns the Stone-Čech compactification βX of a Ty-
chonoff space X .

When using the Stone-Čech compactification, it’s usually best to use the Stone-Čech
property, rather than using the details of the construction.

Intuitively, it’s probably correct to think of the embedding h of a Tychonoff space in
its Stone-Čech compactification as if it were the identity. But when writing out formal
answers in which h occurs, drawing appropriate commutative diagrams really helps.

1. Suppose X is a T4 space and that h : X → βX is the “canonical embedding” of X into
its Stone-Čech compactification. If A and B are disjoint closed subsets of X, prove that

h(A)
βX

∩ h(B)
βX

= ∅.

Using Urysohn’s Lemma, define a continuous function f : X → [0, 1] such that f [A] ⊆
{0} and f [B] ⊆ {1}.

Extend to a continuous function βf : βX → [0, 1].

Then h(A)
βX

⊆ (βf)−1{0}, and h(B)
βX

⊆ (βf)−1{1}, so the two sets are disjoint.

2. Let E denote the set of even natural numbers. Show that h(E)
βN

is homeomorphic to
βE, and hence that βN may be represented as the disjoint union of two homeomorphs of
itself. (Here N has its usual discrete topology.)

Showing that h(E)
βN

is homeomorphic to βE amounts to showing that any contin-
uous function from E to any compact Hausdorff space (or, equivalently, to [0, 1]) may be

extended to a continuous function on h(E)
βN

. We do this by first extending a function
f : E → [0, 1] to a function g : N → [0, 1], noting that since N is discrete, g is continuous,

then extending g to a function βg : βN → [0, 1], and then noting that βg↾h(E)
βN

is a

function from h(E)
βN

to [0, 1] extending f , as required.

h(E)
βN

and h(N \ E)
βN

are disjoint by the previous question, and their union is
h(E) ∪ h(N \ E), namely βN itself.

Also βE and β(N \ E) are clearly homeomorphic to βN.

3. If Np is the neighbourhood filter in βN of a point p ∈ βN\h(N), and U = {N ∩N : N ∈
Np}, show that U is a free ultrafilter on N, and deduce that Np does not have a countable
basis.

That U is a filter is pretty much trivial, and follows from the observations that Np

is a filter and that h(N) is dense in βN. To show that it is an ultrafilter, let A ⊆ N. Let
f : N → {0, 1} be defined so that f(n) = 1 if and only if n ∈ A. Extend to a continuous
function βf : βN → {0, 1}. Then βf(p) is either 1 or 0; accordingly either A or N \ A is
an element of U.

That U is a free ultrafilter follows from Hausdorffness of βN (p can be separated from
every h(n)).

From the fact that U does not have a countable basis it follows that Np does not
either.



4. Show that every compact metric space is a continuous image of βN.

Let D be a countable dense set of the compact metric space K, which exists because
every Lindelöf metric space is separable; write D = {dn : n ∈ N}. Define f : N → D by
f(n) = dn. This is continuous because N is discrete.

Now extend to βf : βN → K. Now βf is continuous and βN is compact, so the image
βf(βN) is compact. K is Hausdorff, so βf(βN) is closed. D ⊆ βf(βN) is dense, so in fact
βf(βN) = K, as required.

This actually proves that every compact Hausdorff separable space is a continuous
image of βN. Non-metrisable such spaces include βN itself, βR, (for those familiar with
set theory) the Tychonoff product of 2`0 copies of [0, 1], and so on. (The fact that the
last-mentioned is separable, is non-trivial and is an interesting exercise.)

5. Is βN metrisable? (If so, prove it; if not, show why not.)

βN has points with no countable local basis, so it is not metrisable.

βN is in fact very badly not metrisable. As an example of this, for those who know
some set theory, there’s a theorem that every separable metric space has cardinality no
more than 2`0 . βN has cardinality 22

`0

(≥ because βN can be mapped onto the Tychonoff

product of 2`0 copies of [0, 1], and ≤ because there are only 22
`0

possible values that the
ultrafilter U in question 3. can take).

6. Let E be that subset of R2 defined by

E =

[

∞
⋃

n=1

(

[0, 1]×

{

1

n

})

]

∪ {(0, 0)} ∪ {(1, 0)}.

Identify all the components and all the quasi-components of E. (E has the topology induced
by the usual topology on R

2.)

All the lines [0, 1]×{ 1
n
} are clopen and connected, so they are clearly both components

and quasi-components.
If we eliminate these, we are left with the two-element set {(0, 0), (1, 0)}. Since this

is disconnected, each element forms a separate component.
However, any clopen set U containing (0, 0) meets infinitely many of the lines [0, 1]×

{ 1
n
}, because U is open. These lines are connected so must be entirely contained in U .

Now because U is closed, it must contain (1, 0).
So the two-element set {(0, 0), (1, 0)} is a quasi-component.

7. Let F be that subset of R2 defined by

F =
{

(x, y) : y = sin
π

x
, x ∈ (0, 1]

}

∪ A, where A = {(0, y) : −1 ≤ y ≤ 1},

with the topology induced by the usual topology on R
2. Prove that F is a connected, but

not locally connected, topological space.

The set {(x, y) : y = sin π
x
, x ∈ (0, 1]} is the continuous image of the interval (0, 1], so

it is connected. F is the closure of this set, so it is connected also.



F is not locally connected, since any basis of neighbourhoods at (0, 12 ) must, for some
n, contain a set U which contains B 1

n
(0, 1

2
) and which is contained in B 1

2

(0, 1
2
). No such

set U can be connected.

8. Suppose that A and B are closed subsets of a compact Hausdorff space X such that no
component of X meets both A and B. Show that there exists a clopen subset C of X such
that A ⊆ C ⊆ X \B.

This is very similar to the proof that a compact Hausdorff space is normal.

By the Šura-Bura Lemma, no quasi-component of X meets both A and B. So, for
each point x of A and each point y of B, x and y belong to different quasi-components,
so there exists a clopen set Ux,y such that x ∈ Ux,y and y /∈ Ux,y. Write Vx,y for the
complement of Ux,y, which is also clopen.

Then for each point x of A, the family {Vx,y : y ∈ B} is an open cover of B, which is
compact, so there is a finite subcover {Vx,yx,i

: i < nx}. Let Vx =
⋃

i<nx
Vx,yx,i

. Then Vx

is a clopen set containing B and not containing x. Let Ux be the complement of Vx. Then
Ux is a clopen set containing x and not meeting B.

Now {Ux : x ∈ A} is an open cover of A, which is compact, so let {Uxi
: i < n} be a

finite subcover. Let C =
⋃

i<n Uxi
. Then C is a clopen set containing A and not meeting

B, as required.

9. Suppose that D is a non-empty compact proper subset of a connected Hausdorff space
Y . Show that every component of D meets the boundary of D.

This is the so-called “boundary-bumping theorem”.

Suppose K is a component of D which does not meet the boundary of D.
Now K and ∂D are closed subsets of D, and no component of D meets both.
So there exists C clopen in D such that K ⊆ C but C∩∂D = ∅, from which it follows

that C ⊆ D◦.
Now C is closed in D, and D is closed in Y , so C is closed in Y .
Also C is open in D, and hence in D◦, and D◦ is open in Y . Hence C is open in Y .
So C is clopen in Y .
Now C contains a component of D, so C is non-empty. Also C is contained in D, so

C is not the whole of Y .
Hence Y is not connected, giving a contradiction.

10. For f, g ∈
∏

n∈N[0, 1], define D(f, g) =
∑

∞

n=0 2
−n|f(n) − g(n)|. Show that the

Tychonoff topology on the product
∏

n∈N[0, 1], and the topology generated by the metric D,
are the same.

Firstly, we observe that D is a metric on the Tychonoff product.
Next we prove that D generates the Tychonoff topology. To do this it is sufficient

to show that every D-open ball is Tychonoff open. Then the identity, considered as a
function from the product with the Tychonoff topology to the product with theD-topology,
is a continuous bijection from a compact space to a Hausdorff space, and is therefore a
homeomorphism.

In more detail: We check that D is a metric. That D(f, g) = 0 if and only if f =
g is obvious. D is clearly symmetric. We check the triangle inequality. For each n,



|f(n)− h(n)| ≤ |f(n)− g(n)|+ |g(n)− h(n)| by the triangle inequality on R. The triangle
inequality for D now follows by summing this inequality over n.

We now check that each D-open ball is Tychonoff open. Suppose that g belongs to
the D-ball of radius r around f . Let s = r −D(g, f); then by the triangle inequality, the
ball of radius s around g is contained in the ball of radius r around f .

Now let n > 1/s, and also n > 8. We find a Tychonoff-open set U around g contained
in the ball of radius s around g.

For each m < n − 1, let Um = (g(m) − 1
n2 , g(m) + 1

n2 ) ∩ [0, 1]. For m ≥ n − 1, let
Um = [0, 1].

Then U =
∏

m∈N Um is Tychonoff-open and contains g.
Now suppose that h ∈ U . We estimate D(g, h).
If m < n− 1, then |g(m)− h(m)| < 1/n2, so certainly 2−m |g(m)− h(m)| < 1/n2.
If m ≥ n − 1, then |g(m)− h(m)| < 1. Hence 2−m |g(m)− h(m)| < 2−m, so

∑

∞

m=n−1 |g(m)− h(m)| ≤
∑

∞

m=n−1 2
−m = 2−(n−2) < 1

n2 , since n > 8.

Now D(g, h) < n× 1
n2 = 1/n < s, as required.

Now we know that every metric-open ball is Tychonoff-open. Let φ be the identity
on

∏

n∈N[0, 1], considered as a function from the space with the Tychonoff topology to the
space with the D-metric topology.

Then φ is a continuous bijection from a compact space to a Hausdorff space, and so
is a homeomorphism.

11. Prove that a paracompact regular space is normal.

This is of course similar to the proof that a compact regular space is normal, but the
point of the question is what modifications you need to make it work.

Suppose that X is paracompact and regular, and that C and D are disjoint open sets.
Then for each x ∈ C, there exist disjoint open Ux and Vx such that x ∈ Ux and

D ⊆ Vx.
Then U = {Ux : x ∈ C} ∪ {X \ C} is an open cover of X .
Let V be a locally finite open refinement of U.
Let W = {V ∈ V : V ∩ C 6= ∅}.
Let W =

⋃

V ∈W
V .

Then because locally finite collections are closure-preserving, W =
⋃

V ∈W
V .

Now if V ∈ W, then V ∈ V, so there exists U ∈ U such that V ⊆ U ; and also V ∩C 6= ∅

so U 6= X \C; so U = Ux for some x ∈ C.
Then Ux ⊆ X \ Vx, so Ux does not meet D.
Hence V does not meet D either.
So W does not meet D.
This completes the proof of normality.

12. Prove that a closed subspace of a paracompact space is paracompact.

This closely imitates the proof that a closed subspace of a compact space is compact.
The only wrinkle (which, as it happens, does not make life any more difficult) is that local
finiteness is not absolute: if Y ⊆ X and W is a locally finite family of subsets of Y , then it
may not be locally finite in X . However, the reverse implication, fortunately, does work:
if W is locally finite in X , then it is locally finite in Y .



Let C be a closed subspace of a paracompact space X .
Let U be an open cover of C.
Then for each U ∈ U, there exists an open subset Û of X such that U = Û ∩ C. Let

Û = {Û : U ∈ U}.

Then Û ∪ {X \ C} is an open cover of X .
Let V be a locally finite open refinement.
Then {V ∈ V : V ∩X 6= ∅} is a refinement of Û, and is locally finite with respect to

X .
Then {V ∩ C : V ∈ V, V ∩ X 6= ∅} is a refinement of U, and is locally finite with

respect to C.

13. Prove that the following three conditions on a regular space X are equivalent:

(i) Every open covering of X has a locally finite open refinement (that is, X is para-
compact);

(ii) Every open covering of X has a locally finite refinement (the elements of the
refinement not being necessarily open or closed);

(iii) Every open covering of X has a locally finite closed refinement (the elements of
the refinement being closed sets).

(i)⇒(ii): Trivial.
(ii)⇒(iii): I first give a plausible, but wrong, proof, and then give a correct proof.

Wrong proof: Let U be an open covering of X . Let V be a locally finite refinement of
U. Then {V : V ∈ V} is a locally finite closed refinement of U: one can easily check that it
is locally finite, and. . . it isn’t actually a refinement of U, because it’s quite possible that
V ⊆ U but V 6⊆ U . Oh dear.

The solution: make the elements of V a bit smaller.
Because X is regular, for each element x of X , there exists open Wx such that, for

some U ∈ U, x ∈ Wx ⊆ Wx ⊆ U .
Now W = {Wx : x ∈ X} is an open cover of X .
Let V be a locally finite refinement of W.
Let V̂ = {V : V ∈ V}.

Then we argue that V̂ is a locally finite closed refinement of U.
That V̂ is a cover, follows from the fact that V is a cover.
V̂ is locally finite: let x ∈ X , and let U be an open neighbourhood of x witnessing

local finiteness of V, that is, so that U ∩ V 6= ∅ for only finitely many members V of V.
Now since U is open, U ∩ V 6= ∅ if and only if U ∩ V 6= ∅. Hence U witnesses local

finiteness of V̂ at x.
V̂ refines U: suppose that V ∈ V. Then for some x ∈ X , V ⊆ Wx, and for some

U ∈ U, Wx ⊆ U .
Then V ⊆ Wx ⊆ U , as required.
(iii)⇒(i) is hard.
Let U be an open cover of X . Let W be a locally finite closed refinement of U.
Now because W is locally finite, for all x ∈ X , there exists open Vx ∋ x such that Vx

meets only finitely many members of W.



Then V = {Vx : x ∈ X} is an open cover of X .
Let T be a locally finite closed refinement of V.
Now for each W ∈ W, there exist UW ∈ U such that W ⊆ UW .
We now define an open set SW as follows:

SW = UW \
⋃

{T ∈ T : T ∩W = ∅}.

Now it is clear that SW ⊆ UW .
Also W ⊆ SW .
Hence S = {SW : W ∈ W} is a cover, and is a refinement of U.
Now T is locally finite, and locally finite collections are closure-preserving, so

⋃

{T ∈
T : T ∩W = ∅} is closed, so SW is open.

So S is a locally finite open refinement of U.
We now need to check whether it is locally finite.
Let x ∈ X . Let R be an open neighbourhood of x witnessing that T is locally finite.
Then R ∩ T 6= ∅ for just finitely many T ∈ T.
Now T is a refinement of V. So for each T ∈ T, there exists y such that T ⊆ Vy. Now

Vy meets only finitely many elements of W.
Hence each T meets only finitely many elements of W.
That means that for each T ∈ T, there are only finitely many elements W ′ of W such

that T is not removed in the construction of SW ′ ; that is, for all T ∈ T, there are only
finitely many W ′ ∈ W such that T ∩W ′ 6= ∅.

Thus R meets only finitely many elements of T, and each of these meets only finitely
many elements of S.

Hence R meets only finitely many elements of S.
So S is locally finite.

14. Let B be a Boolean algebra. Prove that the following hold, for all a, b, c ∈ B:

(i) a ≤ b if and only if a ∨ b = b,

Using the definition of ∨.

(ii) b = ¬a if and only if b ∧ a = � and b ∨ a = �,

The forward direction is spelt out in the definition of a Boolean algebra.
As for the reverse direction, ¬a = ¬a∨� since � ≤ ¬a, which equal to ¬a∨ (b∧a) =

(¬a ∧ b) ∨ (¬a ∧ a) = (¬a ∧ b) ∨� = ¬a ∧ b, so ¬a ≤ b by an argument similar to part
(i). Also ¬a = ¬a ∧ � since � ≥ ¬a, which equal to ¬a ∧ (b ∧ a) = (¬a ∨ b) ∧ (¬a ∨ a) =
(¬a ∨ b) ∧ � = ¬a ∨ b, so ¬a ≥ b.

(iii) ¬(a ∧ b) = (¬a) ∨ (¬b).

We show that (a∧ b)∨ ((¬a)∨ (¬b)) = � and (a∧ b)∧ ((¬a)∨ (¬b)) = �, and use the
previous part of the question.

We use the distributive law to show that (a∧ b)∨ ((¬a)∨ (¬b)) = (a∨¬a∨¬b)∧ (b∨
¬a ∨ ¬b), which is equal to �.

The other argument is similar.



15. Let A, B be Boolean algebras, and let φ : A → B be a homomorphism. Prove that Sφ
is one-to-one if and only if φ is onto, and is onto if and only if φ is one-to-one.

In this solution, and subsequent solutions as well, we presume that the reader has no
acquaintance with category theory.

Suppose that Sφ is not one-to-one. Suppose that q and r are distinct elements of SB

such that Sφ(q) = Sφ(r).
Then {a ∈ A : φ(a) ∈ q} = {a ∈ A : φ(a) ∈ r}.
Thus either q 6= {a ∈ A : φ(a) ∈ q}, or r 6= {a ∈ A : φ(a) ∈ r}, or more likely both.
Now suppose that Sφ is one-to-one. Let b be an element of B.
Then, letting [[b]] be the subset of SB consisting of all q such that b ∈ q, Sφ([[b]])

is disjoint from Sφ(SB \ [[b]]). Since Sφ is continuous and both sets [[b]] and SB \ [[b]]
are closed and therefore compact, their images Sφ([[b]]) and Sφ(SB \ [[b]]) and therefore
closed. Since all components of SA are single points, we can use question 8. to find a
clopen subset C of SA which contains Sφ([[b]]) and is disjoint from Sφ(SB \ [[b]]).

Then C has the form [[a]], for some a ∈ A.
We now argue that φ(a) = b.
For any ultrafilter q on B, we ask when φ(a) belongs to q.
φ(a) belongs to q if and only if a ∈ Sφ(q), if and only if Sφ(q) ∈ [[a]], if and only if

q ∈ [[b]], if and only if b ∈ q.
Thus for all ultrafilters q, φ(a) ∈ q if and only if b ∈ q.
If φ(a) and b were different, we would be able to find an ultrafilter containing one and

not the other.
Thus φ(a) = b, and φ is onto.
Suppose that Sφ is onto. Suppose that a and b are distinct elements of A, and that

p is some ultrafilter on A which contains a and not b.
Using the fact that Sφ is onto, let q be some element of SB such that Sφ(q) = p.
Now p = {c ∈ A : φ(c) ∈ q}. Then φ(a) ∈ q, while φ(b) /∈ q; so φ(a) 6= φ(b); so φ is

one-to-one.
Now suppose that φ is one-to-one. Let p be any element of SA.
We consider the set q̂ = {φ(a) : a ∈ p}.
Now q̂ is certainly closed under the operation ∧, because if φ(a) and φ(b) belong to

q̂, where a, b ∈ p, then φ(a) ∧ φ(b) = φ(a ∧ b), and a ∧ b belongs to p because p is a filter,
so φ(a ∧ b) ∈ q̂.

Also �B /∈ q̂, because �B = φ(�A), �A /∈ p, and φ is one-to-one.
It now follows that q̃ = {a ∈ A : ∃b ≤ a b ∈ q̂} is a filter, which can be extended to an

ultrafilter q.
Then Sφ(q) = p; so Sφ is onto.

16. Let B be a Boolean algebra. Prove that ηB : B → BSB is an isomorphism.

Recall that ηB takes an element a of B to the subset [[a]] of BSB.
Every element of SB contains �B, so every element of SB belongs to [[�B]], so [[�B]] =

SB = �

BSB.
An element p of SB contains both a and b if and only if it contains a ∧ b.
So, p belongs to both [[a]] and [[b]] if and only if it belongs to [[a ∧ b]].



So [[a]] ∩ [[b]] = [[a ∧ b]].
Now any element p of SB contains a if and only if it does not contain ¬a. Hence p

belongs to [[a]] if and only if it does not belong to [[¬a]].
Thus [[¬a]] is the complement of [[a]].
This is enough to establish that ηB is a homomorphism.
If a and b are distinct elements of B, then there is an ultrafilter containing one and

not the other. Thus [[a]] and [[b]] are different. So ηB is one-to-one.
Now let U belong to BSB.
Then U is a clopen subset of SB.
Since it is open, it is a union of basic open sets [[a]]. So the basic open sets [[a]], for

which [[a]] ⊆ U , cover U .
Since U is closed, it is compact, so there is a finite subcover by sets [[a1]], . . . , [[an]].
Then U = [[a1]] ∪ · · · ∪ [[an]] = [[a1 ∨ · · · ∨ an]], and so U is in the range of ηB.
So ηB is onto.

17. (i) What is the Stone dual of the one-point topological space?

The one point topological space ∗ has two different clopen sets, namely ∅ and ∗ itself,
and ∅ is a strict subset of ∗. Thus the Stone dual of ∗ is a two-element Boolean algebra,
and all such are isomorphic.

(ii) Let ∗ be the one-point topological space. Let X be a compact Hausdorff zero-
dimensional space. One can think of a point of X as being the range of a function from ∗
to X. Let f : ∗ → X, and let p be the unique point in the range of f . (f is automatically
continuous. Why?) Describe Sf completely in terms of p.

In the previous sentence Sf is an error and should be Bf .
f is continuous because ∗ is discrete.
Bf : BX → B∗. Let U be a clopen subset of X .
Then Bf(U) = ∗ if and only if f−1(U) = ∗ if an only if U contains p.
Thus (Bf)−1(∗) = p, and this fact determines Bf .

(iii) A product of two Boolean algebras A and B is the cartesian product with pointwise
operations, that is, �A×B = (�A, �B), �A×B = (�A, �B), ¬(a, b) = (¬a,¬b), (a1, b1) ∧
(a2, b2) = (a1 ∧ a2, b1 ∧ b2), (a1, b1) ∨ (a2, b2) = (a1 ∨ a2, b1 ∨ b2), and (a1, b1) ≤ (a2, b2)
if and only if a1 ≤ b1 and a2 ≤ b2. Suppose that Z is the disjoint union of two compact
zero-dimensional Hausdorff spaces X and Y . Show that BZ is isomorphic to BX ×BY .

The clopen subsets of Z are precisely the unions W = U ∪ V , where U is a clopen
subset of X and V is a clopen subset of Y . Under these circumstances, U = W ∩X and
V = W ∩ Y .

Thus the map W 7→ (W ∩X,W ∩Y ) is an isomorphism between BZ and BX ×BY .

Optional questions

18. One statement of the Baire Category Theorem is that any intersection of countably
many dense open subsets of R is non-empty.

(i) Deduce from the above statement that any intersection of countably many dense
open subsets of R is dense.



Let {Un : n ∈ N} be a countable family of dense open sets.
Let (a, b) be any non-empty open interval.
Then for each n, Un ∩ (a, b) is dense in Un.
Also, (a, b) is homeomorphic to R, and so the Baire Category Theorem applies.
Hence the intersection of the sets Un ∩ (a, b) is non-empty.
Hence the intersection of the sets Un is dense.

(ii) We say that a subset of R is of first category if it is contained in the complement
of an intersection of countably many dense sets. Intuitively, one can regard first category
sets as being small, and the Baire Category Theorem says that R is not of first category.
Prove that any countable union of first category sets is of first category and so is not small.

The word “not” at the end of the preceding sentence is an error, which I’ve only just
found.

For each natural number n, let An be a set of first category, and let {Un,m : m ∈ N}
be a family of dense open sets witnessing this, that is, such that

An ∩
⋂

m∈N

Un,m = ∅.

Then {Un,m : n, m ∈ N} is a family of dense open sets, and

⋃

n∈N

An ∩
⋂

n,m∈N

Un,m = ∅.

Hence
⋃

n∈N An is of first category.

(iii) Prove the Baire Category Theorem.

[Hint: Remember that any intersection of a strictly decreasing sequence of closed
bounded intervals is non-empty.]

Let {Un : n ∈ N} be a countable family of dense open sets in R.
We construct intervals In, for n ∈ N, by recursion, so that In has length less than or

equal to 1
2n , such that In ⊆ Un, and In+1 ⊆ In. The inductive step uses the fact that

Un+1 is dense, allowing us to conclude that Un+1 ∩ In is non-empty.
Now the sets In are a decreasing sequence of compact, closed subsets of R, and so

have non-empty intersection. Thus so do the sets In, and therefore so do the sets Un.

(iv) (For those who know some measure theory.) Find a subset Q of R such that R\Q
is of first category, and Q is null.

The set Q of rationals is countable and therefore null. For each n, find a countable
family {In,m : m ∈ N} of total length less than or equal to 1

2n such that Q ⊆
⋃

m∈N In,m.
Let Un =

⋃

m∈N In,m. Then Un is dense and open, and has measure less than or equal
to 1

2n .
Let Q =

⋂

n∈N Un. Then Q is dense and null, and R \Q is of first category.

19. (i) Let A be a subset of R having the property that for all points x of R except at
most one, there exists an open neighbourhood U of x such that A ∩ U is countable. Prove
that A is countable.



Let a be a point of R such that if x 6= a, then there is an open neighbourhood Ux of
x such that A ∩ Ux is countable.

Let U be the set of all the Ux for x 6= a.
Now R\{a} is a separable metric space and therefore is Lindelöf. Let V be a countable

subcover of U.
Then A ⊆ {a}∪

⋃

V ∈V
A∩V , which is a countable union of countable sets and therefore

countable.
So A is countable.

(ii) Deduce that if A is an uncountable subset of R, there exist (at least) two distinct
points x and y such that for every open neighbourhood U of either x or y, U ∩ A is
uncountable.

This follows immediately from the previous part.

(iii) Prove that every uncountable closed subset of R contains a homeomorphic copy
of the Cantor set.

Let A be an uncountable closed subset of R.
For any finite sequence s of zero’s and ones, we construct an open interval Is by

recursion on the length of s, using the above fact, with the following properties.
*) The length of the interval Is is less than or equal to 2s.
*) If the sequence s is an initial part of the sequence t, then It ⊆ Is.
*) If s and t are different sequences of the same length, then Is ∩ It = ∅.
*) For all s, Is ∩ A is uncountable.
The initial step of the recursion, for s equal to the empty sequence, simply requires

us to find an interval of length 1 whose intersection with A is uncountable. But

{(n2 − 1, n2 − 1) : n ∈ Z}

is a countable cover of R by intervals of length 1, so at least one of these must have
uncountable intersection with A.

For the inductive step, suppose Is has been chosen. Then we need to define Is0 and
Is1.

Now A ∩ Is is uncountable by the inductive hypothesis.
Therefore there exist distinct points x and y in Is such that every neighbourhood of

either one of x and y meets A in an uncountable set.
So, we find intervals Is0 and Is1 containing x and y respectively, such that the length

of both is less than or equal to 1
2m , where m is the length of the sequences s0 and s1, and

such that the closures of these two intervals are disjoint and contained in Is.
Now if f is any infinitely long sequence of zeroes and ones, the intervals Is, for s

a finite initial part of f , are a nested sequence of closed compact subsets of R, so have
non-empty intersection. That intersection is a single point, because of the restriction on
the lengths of the intervals Is. Let xf be that single point.

Now if f 6= g, then xf and xg must be different; also each xf is, for each n, within
distance 1

2n of some element of A; so because A is closed, xf belongs to A.
So K, the set of all the xf , is an uncountable subset of A. It is also reasonably clear

that it is homeomorphic to the Cantor set.



(iv) (Harder) Prove that any intersection of countably many dense open subsets of R
contains a homeomorphic copy of the Cantor set.

Let {Un : n ∈ N} be a countable family of dense open subsets of R.

Repeat the above construction, only drop the requirement that Is ∩ A should be
uncountable, and add the requirement that for n less than or equal to the length of the
sequence s, Is should be a subset of Un.

20. (i) Let X be a compact zero-dimensional metric space. Note that X is second
countable, by Urysohn’s Metrisation Theorem. Prove that every clopen subset of X is a
finite union of basic open sets. Prove that BX is countable.

The proof that X is second countable goes like this. X is Lindelöf and metrisable, so
must be separable. But X is a separable metric space, so must be second countable.

Let U be a clopen subset of X . Then U is a union of basic open sets. Therefore there
is a cover U of U by basic open sets. But U is closed, therefore compact. So U has a finite
subcover, V. Now V is a finite subset of the original basis, and U =

⋃

V.

Now let B be a countable basis for X . Then B has just countably many finite subsets.
Thus X has just countably many clopen subsets altogether.

Therefore BX is countable.

(ii) Let P be ℘N, considered as a Boolean algebra. Define h : N → SP so that
h(n) = {A ⊆ N : n ∈ A}. Then h is continuous. (Why?) Let f : N → [0, 1] be any function.
Define a continuous function g : SP → [0, 1] so that for all n ∈ N, g(h(n)) = f(n), and
deduce that SP is homeomorpic to βN.

[Hint: Suppose that p ∈ SP. What is p? What value might you choose for g(p)?]

h is continuous because N is discrete.

We apply ourselves to defining g.

Let p be an element of SP.

Then p is an ultrafilter on the Boolean algebra P.

Therefore p is an ultrafilter on ℘N.

For each n, we can cover [0, 1] with 2n disjoint intervals of length 2n. (For example,
for n = 2, we can cover [0, 1] with [0, 1

4
), [ 1

4
, 1
2
), [ 1

2
, 3
4
), [ 3

4
, 1].) The inverse images of these

intervals under f partition N into finitely many parts, of which exactly one must belong
to the ultrafilter p. So let In be the chosen interval.

Since the sets f−1(In) belong to p, every finite set of them must have non-empty
intersection, so the same must be true of the intervals In.

Then there is a unique point x such that x belongs to the closures of all the intervals
In.

Define g(p) to be x.

We now check that the inverse image of any open set around x, is an open neighbour-
hood of p.

Let U be an open neighbourhood of x, and let q be an element of g−1(U).

Let {Jn : n ∈ N} be the sequence of intervals used in defining g(q). Let n be large
enough that Jn ⊆ U . Then g(q) ∈ Jn, and f−1(Jn) ∈ q. If r ∈ SP is such that
f−1(Jn) ∈ r, then by definition of g, g(r) ∈ Jn also.



But the set {r ∈ SP : f−1(Jn) ∈ r} is open in SP; and its image under g is contained
in U .

So g−1(U) is open.
Now let p be any element of g−1(In).
Then, considering p as an ultrafilter on N, f−1(In) ∈ p.
Now (h,SP) is a compactification of N with the Stone-Čech property.
So SP must be homeomorphic to the Stone-Čech compactification of N.

(iii) (Much easier.) Now deduce that βN is not metrisable.

SP is a Stone space whose dual Boolean algebra is uncountable. Therefore it cannot
be metrisable.

21. (Quite hard.) The Sorgenfrey Line S is the real line with the topology generated by sets
of the form (a, b], for real numbers a and b. The Michael Line M is the real line equipped
with basic open sets of the form {r} for irrational r and (r − 1

n
, r + 1

n
) for r rational and

n a natural number.

(i) Prove that the Michael Line is T4.

Let C and D be disjoint and closed.
Let x be any element of C. If x is irrational, then let Ux = {x}. If on the other hand

x is rational, then let Ux = (x− 1
2nx

, x+ 1
2nx

), where nx is such that (x− 1
nx

, x+ 1
nx

) does
not meet D.

Similarly, let y be any element of C. If y is irrational, then let Vy = {y}. If on the other
hand y is rational, then let Vy = (y− 1

2ny
, y+ 1

2ny
), where ny is such that (y− 1

ny
, y+ 1

ny
)

does not meet C.
Let U =

⋃

x∈C Ux, and let V =
⋃

y∈D Vy.
Then U and V are open, C ⊆ U , and D ⊆ V .
Suppose that U and V meet.
Then for some x ∈ Q ∩ C and y ∈ Q ∩D, Ux ∩ Vy 6= ∅.
Then the distance between x and y is less than 1

2nx
+ 1

2ny
, which is less than or equal

to the greater of 1
nx

and 1
ny

. But this contradicts the definition of either nx or ny.

So U and V are disjoint, as required.

(ii) In the product (R \Q)×M, let C be the set of points (x, y) such that y is rational,
and let D be the set of points (x, x), for x irrational. Prove that C and D are disjoint
and closed, but that if U and V are any open sets such that C ⊆ U and D ⊆ V , then
U ∩ V 6= ∅. Deduce that this product is not normal.

[Intuitively, this is because, letting V(x,x) be a neighbourhood of the point (x, x) in D
such that V(x,x) is contained in V , then too many of the sets V(x,x) are too big and crowd
too close together so as to force U and V to intersect. To make this argument formal, you
will need the Baire Category Theorem, from further up the sheet.]

The complement of C is the product of the irrationals with the irrational points of
the Michael line. Since R \Q is an open subset of M, the complement of C is open; hence
C is closed.

Every subset of M which is open in the usual topology on R, is open in M. So every
set which is open in the usual product topology on (R \ Q) × R, is open in (R \ Q) ×M.



Hence every set which is closed in the usual product topology on (R \Q)×R, is closed in
(R \ Q) ×M. Now D is the intersection with (R \ Q) × R of the diagonal, so is closed in
(R \Q)× R. Hence D is closed in (R \Q)×M.

C and D are clearly disjoint.
Now suppose that U and V are open sets such that C ⊆ U and D ⊆ V . We show

that U and V must meet.
A basic open neighbourhood of an element (x, x) ofD has the form (x− 1

n
, x+ 1

n
)×{x}.

For each irrational x, let nx be such that (x− 1
nx

, x+ 1
nx

)× {x} ⊆ V .
For each n, let Dn be the set of all elements x of D such that nx = n.
Then R can be expressed as a countable union thus:

R =
⋃

q∈Q

{q} ∪
⋃

n∈N

Dn.

By the Baire Category Theorem, it cannot be the case that every one of these sets is
disjoint from a dense open set.

So there must exist n such that whenever U is a dense open set, then Dn ∩ U 6= ∅.
It follows that there exists a non-trivial interval I such that Dn is dense in I. For if

not, for every non-empty open interval I, let UI be some open subset of I not meeting Dn.
Then let U =

⋃

I UI . Then U is a dense open set not meeting Dn.
Now let y be a rational number in the interior of I, and let x be an irrational element

of I at a distance of less than 1
n
from y.

Then any basic open neighbourhood of (y, x) meets some set (z − 1
n
, z + 1

n
) for some

z ∈ Dn.
Thus (y, x) ∈ V .
Since (y, x) ⊆ U , U ∩ V 6= ∅.

(iii) Prove that the Sorgenfrey Line is T4.

Let C and D be disjoint closed sets.
For each x ∈ C, let ax < x be some point such that the open set (ax, x] does not meet

D. Let U =
⋃

x∈C(ax, x]. Similarly, for each y ∈ D, let by < y be some point such that
the open set (by, y] does not meet C. Let V =

⋃

y∈D(by, y].
Then U and V are open sets including C and D respectively.
Suppose that U and V overlap.
Then so must some pair of intervals (ax, x] and (by, y], where x ∈ C and y ∈ D.
Either x < y or y < x. Suppose the former. Then because (ax, x] ∩ (by, y] 6= ∅,

by < x < y. But this contradicts the definition of by.
So U and V are disjoint.

(iv) Prove that in S× S, any subset of the antidiagonal {(x,−x) : x ∈ R} is closed.

Every open subset of R is open when regarded as a subset of S, so every open subset
of R× R is open when regarded as a subset of S× S. Hence every closed subset of R× R

is closed when regarded as a subset of S× S.
Hence the antidiagonal is closed in S× S.
Now let (x,−x) be any point of the antidiagonal.



Then the open set (x− 1, x]× (−x− 1,−x] meets the antidiagonal only at the point
(x,−x).

Hence all points of the antidiagonal in S× S are open in the antidiagonal.
Hence the antidiagonal is discrete.
Hence every subset of the antidiagonal in S × S is closed in the antidiagonal, and is

therefore closed in S× S, since the antidiagonal itself is closed.

(v) In S × S, let C be the set of points of the antidiagonal with rational coordinates,
and let D be the set of points of the antidiagonal with irrational coordinates. Prove that if
U and V are open sets such that C ⊆ U and D ⊆ V , then U ∩ V 6= ∅, and deduce that
S× S is not normal.

For each (x,−x) ∈ D, let nx be such that the basic open neighbourhood (x− 1
n
, x]×

(−x− 1
n
,−x] of (x, x) is contained in V .

Let Dn be the set of all x such that nx = n.
Then by the Baire Category Theorem, there exists n and there exists a non-empty

open interval I such that Dn is dense in I.
It is now possible to check that if x is a rational element of I, then the element (x,−x)

of C is in the closure of V . Thus U and V must meet.

22. (For those who know some set theory.) Assume ZFC.

(i) Prove that every uncountable closed subset of R has cardinality 2`0 .

Earlier on this sheet, it was proved that every uncountable closed subset of R contains
a copy of the Cantor Set.

Thus every uncountable closed subset of R has size at least 2`0 .
But any such set is a subset of R, so has size at most 2`0 .
Now, by the Schröder-Bernstein Theorem, every uncountable closed subset of R has

size exactly 2`0 .

(ii) Prove that there are 2`0 closed subsets of R. [Hint: how many open subsets are
there? ]

Let B be a countable basis for R.
Let U be an open subset of R. Then U is a union of elements of B. So let UU be the

set of all elements of B which are subsets of U . Then U =
⋂

UU .
Then the map U 7→ UU is a one-to-one map from the set of open subsets of R to the

powerset of B. The powerset of a countably infinite set has size 2`0 , so there are at most
2`0 open sets in R.

There are certainly at least 2`0 open sets in R—consider the intervals (a,∞) for
a ∈ R—so by the Schröder-Bernstein Theorem, there are exactly 2`0 open subsets of R.

Hence there are the same number of closed subsets.

(iii) (Hard, and requiring some form of Choice.) A Bernstein Set is a subset B of
R such that both B and its complement meet every uncountable closed set. Prove that a
Bernstein set exists.

List all the uncountable closed subsets of R in order-type c = 2`0 as (Cα : α < c).
Using transfinite recursion, we define points xα, yα of R, for α < c, such that
*) all the points xα and yα, for all the different values of α, are different,



*) xα, yα ∈ Cα.
This is possible, because for any α < c, there are fewer than c values of β < α, so the

set {xβ : β < α} ∪ {yβ : β < α} has size less than c.
But Cα, as an uncountable closed subset of R, has size exactly c.
So Cα \ {xβ : β < α} ∪ {yβ : β < α} has size at least two.
So xα and yα can be defined.
When the recursion is complete, let B = {xα : α < c}.
Then B is a Bernstein set.


