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HEALTH WARNING

This is a set of lecture notes. That is, it is a document mainly intended to remind the
lecturer (me) what to say and what to write on the board. I may say things differently
from how they are written here, or in a different order. I shall certainly say things that
are not written here, and the reverse may possibly be true.

Also, this document is optimised for that purpose. The layout and font sizes are chosen
so that I can easily read them in a lecture. The document has not been carefully proofread.
Extensive explanations and diagrams, of the sort you would expect in a book, are absent.
Indeed, this is not a book and not intended as a substitute for one: recommendations of
books are on the reading list.

I may continue to edit this document throughout the term.

END HEALTH WARNING
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Everything in the lectures or on the problem sheets is on the syllabus and examinable,
unless otherwise indicated.*

Prerequisites: an introductory course in topology is assumed; knowledge of set theory
and logic would be helpful, but is not presupposed.

0. What is topology?

Definition 0.1. 〈X,T 〉 is a topological space iff T ⊆ ℘X, and

1. ∅, X ∈ T

2. U, V ∈ T⇒ U ∩ V ∈ T

3. U ⊆ T⇒
⋃

U∈U

U ∈ T

These axioms are complex—especially axiom 3.—we cannot get to grips with topolog-
ical spaces by looking at points one by one, as we can with a group.†

Bad: topologies are hard to understand—so we often find ways to avoid having to
look at a whole topology: bases, homotopy groups, etc.

Good: The topological property of connectedness is the part of the “essence” of R that
first order logic can’t describe. Topology is powerful.

The axioms are simple.
Bad: They don’t in themselves say much. So topological spaces are hugely varied—

topology is classification rather than theory.
Good: Topologies are everywhere, wherever you have a notion of closeness: in geom-

etry, analysis, computer science, etc. With topology, the world is your oyster.
How do we approach the diversity of topology?

* Anything in the footnotes is not on the syllabus, and may refer to notions from, for
example, logic and set theory which are not assumed known in the main text.
† The notion of complexity referred to here is logical: that topology is not first order.

For instance, any ordered field which is connected in the order topology is isomorphic
to R and so has cardinality 2`0 ; so by the Löwenheim Skolem Theorem, the concept of
connectedness cannot be described in first order.

Connectedness of a total order without endpoints could be expressed in second order
logic as follows:

∀U

(

(

(

∀x
(

Ux→ ∃y∃z (y < x& x < z & ∀w ((y < w & w < z)→ Uw))
)

∧∀x
(

¬Ux→ ∃y∃z (y < x& x < z & ∀w ((y < w & w < z)→ ¬Uw))
)

)

)

→
(

(∀xUx) ∨ (∀x¬Ux)
)

)

.
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We will proceed cautiously, starting with familiar, “nice” spaces like [0, 1] and R, and
ask, given a criterion of niceness:

1. What properties do nice spaces have?

2. What will guarantee that a space is nice?

Nice may be compact, metrisable, etc.

1. Separation Axioms

Topologies often arise where we have intuitive ideas of closeness and separation. We
put these ideas under a microscope.

Our basic idea is: separation by means of open sets.

1.1. Basic separation axioms.

Definition 1.1.1. A topological space X is T0 iff whenever x and y are distinct points
of X, there is an open set U such that either x ∈ U and y /∈ U , or x /∈ U and y ∈ U .

In a T0 space, the topology is able to distinguish between points.

Definition 1.1.2. A topological space X is T1 iff whenever x and y are distinct points
of X, there is an open set U such that x ∈ U and y /∈ U .

Lemma 1.1.3. X is T1 iff every point of X is closed.

Proof: ⇒) Let x ∈ X . Let y 6= x. Then there is open V such that y ∈ V and x /∈ V .
So X \ {x} is open, so {x} is closed.

⇐) Let x 6= y. Then let U = X \{y}. Then U is open, x ∈ U , and y /∈ U , as required.
�

Remember: U is open iff X \ U is closed; and U is open iff for all x ∈ U , there is open
W such that x ∈W ⊆ U .

� Never say “U is open iff not closed”—this is FALSE (think about [0, 1) in R—neither open
nor closed).

Definition 1.1.4. X is T2, or Hausdorff, iff whenever x 6= y ∈ X, there exists open U ,
V such that x ∈ U , y ∈ V and U ∩ V 6= ∅.

Definition 1.1.5. X is regular iff, whenever x ∈ X and C ⊆ X is closed, and x /∈ C,
there exist open U , V such that x ∈ U , C ⊆ V and U ∩ V 6= ∅.

X is T3 iff T1 and regular.

Definition 1.1.6. X is normal iff, whenever C and D are disjoint and closed in X,
there exist open U and V such that C ⊆ U , D ⊆ V , and C ∩D = ∅.

X is T4 iff T1 and normal.

Theorem 1.1.7. T4 ⇒ T3 ⇒ T2 ⇒ T1 ⇒ T0.

Proof: Easy exercise. �
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1.2. More about Normality

Theorem 1.2.1. Every T2 compact space is regular (hence T3, by 1.1.7).

Proof: Let X be a Hausdorff compact space. Let x ∈ X , let C ⊆ X be closed.
For each y ∈ C, find, using T2, open Uy ∋ x and Vy ∋ y such that Uy ∩ Vy = ∅.
Then V = {Vy : y ∈ C} covers C. C, as a closed subset of a compact space, is compact.

So there is a finite subcover {Vy1
, . . . , Vyn

}; we let V =
⋃n

i=1
Vyi

; clearly C ⊆ V .
How do we define U?
Let U =

⋂n
i=1

Uyi
.

Since x ∈ Uyi
for all i, x ∈ U .

Also U ∩ V = ∅; for if z ∈ U ∩ V , then z ∈ V so z ∈ Vyj
for some j; and z ∈ U , so

z ∈ Uyi
for all i. In particular, z ∈ Uyj

∩ Vyj
—� . And, crucially, U is open. Hence the

result. �

Theorem 1.2.2. Any T3 compact space is normal (hence T4, by Theorem 1.1.7.)

Proof: On problem sheet. �

Corollary 1.2.3. If X is compact, X is T2 iff T3 iff T4.

Proof: Theorems 1.1.7, 1.2.1 and 1.2.2. �

Theorem 1.2.4. If X is Ti (for i ≤ 3) and Y is a subspace of X, then Y is Ti also.

Proof: Exercise. �

Definition 1.2.5. Two subsets A and B of a space X are functionally separated iff
there is continuous f : X → [0, 1] such that f(A) ⊆ {0} and f(B) ⊆ {1}.

Lemma 1.2.6. X is normal iff, for every closed C ⊆ U open, there exists open V such
that C ⊆ V ⊆ V ⊆ U .

Proof: Problem sheets. �

Theorem 1.2.7. (Urysohn’s Lemma) Let X be a normal space, and let C, D be disjoint
closed subsets of X. Then C and D are functionally separated.

Proof: We construct a separating function with our bare hands.
Noting that Q ∩ (0, 1) is countable, write

Q ∩ (0, 1) = {rn : n ∈ N},

with r0 = 1, r1 = 0. Now construct open sets Uq, for q ∈ Q ∩ [0, 1], by recursion, so that
if q < q′, then Uq ⊆ Uq′ .

(1) Let W = X \D, so that W is open and C ⊆W .
Let C ⊆ U1 ⊆ U1 ⊆W .
(2) Let C ⊆ U0 ⊆ U0 ⊆ U1.
(3) Suppose we have constructed U1, U0 and also Ur2 , . . . , Urn . We now construct

Urn+1
, as follows.
Writing out 0, r2, . . . , rn and 1 in order of size, let an be the member of this set next

before rn+1 and let bn be the one after.
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Now let Uan
⊆ Urn+1

⊆ Urn+1
⊆ Ubn .

Observe that if r = ri < rn+1, then r ≤ an, so Ur ⊆ Uan
, so Ur ⊆ Urn+1

; and if

r = ri > rn+1, then r ≥ bn, so Ubn ⊆ Ur, so Urn+1
⊆ Ur.

So the inductive hypothesis is preserved.

Having constructed all the Ur, we now build f .

Define

f = inf
(

{1} ∪ {r : x ∈ Ur}
)

.

We note

(1) If x ∈ C, then x ∈ U0; so f(x) = 0. Hence f(C) ⊆ {0}.

(2) If x ∈ D, then for all r, x /∈ Ur. So f(x) = 1. So f(D) ⊆ {1}.

(3) For all x, 0 ≤ f(x) ≤ 1, so f : X → [0, 1].

(4) Is f continuous?

a) We show that for each q, f−1(−∞, q) is open, that is, forall x ∈ f−1(−∞, q), there
exists open W ∋ x such that W ⊆ f−1(−∞, q).

Well, x ∈ f−1(−∞, q) iff f(x) < q iff inf
(

{1} ∪ {r : x ∈ Ur}
)

< q iff either q > 1—so
f−1(−∞, q) = X , which is open—or there exists r < q such that x ∈ Ur, which is enough.

b) We now show that for all q, f−1(q,∞) is open. Well, x ∈ f−1(q,∞) iff f(x) > q iff
inf
(

{1} ∪ {r : x ∈ Ur}
)

> q.

So, in particular, q < 1; and either q < 0, when f−1(q,∞) = X , which is open, or
q ≥ 0. So, find r > q such that r ∈ Q ∩ [0, 1] and x /∈ Ur.

Now find s ∈ Q ∩ (q, r).

Then Us ⊆ Us ⊆ Ur. Now x /∈ Ur, so x /∈ Us, so x ∈ X \ Us, which is open.

Also, if y ∈ X \ Us, then y /∈ Us, so for all t ≤ s, y /∈ Ut. Hence f(y) ≥ s > q. That
is, x ∈ X \ Us ⊆ f

−1(q,∞).

I now claim that f is continuous. I will need a little machinery to show this.

Definition 1.2.8. C is a subbasis for T iff the collection of all finite intersections of
elements of C is a basis. If C is a subbasis for T, say T is generated by C.

Lemma 1.2.9. f : X → Y is continuous iff for every U in some dubbasis C for Y ,
f−1(U) is open.

Proof: Let U be a finite intersection of elements of C; say U =
⋂n

i=1
Wi, Wi ∈ C. Then

f−1(Wi) is open for all i; and f−1(U) = f−1(
⋂n

i=1
Wi) =

⋂n
i=1

f−1(Wi) which is open. �

Lemma 1.2.10. {(−∞, q) : q ∈ R} ∪ {(q,∞) : q ∈ R} is a subbasis for R.

Proof: The set of all open intervals is a basis; and

(a, b) = (−∞, b) ∩ (a,∞).

�

This observation completes the proof of Urysohn’s Lemma. �
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1.3. Subspaces of normal spaces: the Tychonoff property

Definition 1.3.1. A topological space is said to be completely regular if, whenever C is
a closed set, and x /∈ C, {x} and C are functionally separated (see Definition 1.2.5).

It is Tychonoff, or T3 1
2
, if it is completely regular and T1.

Theorem 1.3.2. Every completely regular space is regular.

Proof: Let C be closed, x /∈ C. Let f : X → [0, 1] be such that f(x) = 0 and
f(C) ⊆ {1}.

Let U = f−1(−∞, 1
2
) and V = ( 1

2
,∞). Then x ∈ U , C ⊆ V , U and V are open, and

U ∩ V = ∅. �

Theorem 1.3.3. Suppose X is T4, Y ⊆ X. Then (in the subspace topology) Y is T3 1
2
.

Proof: By Theorem 1.2.4, Y is T1. We show Y is completely regular.
Let C be closed in Y , x ∈ Y \ C.
Then there exists D closed in X such that C = D ∩ Y ; and x /∈ D, for x ∈ Y and

x /∈ D ∩ Y .
Since X is T1, {x} is closed.
By Urysohn’s Lemma (Theorem 1.2.7), {x} and D are functionally separated. So,

find g : X → [0, 1] which is continuous such that g{x} = {0} and g(D) ⊆ {1}.
Let f = g↾Y . Then f is continuous, and, clearly, f{x} = {0} and f(C) ⊆ {1}, as

required. �

Sadly, the analogue of Theorem 1.2.4 for T4 is FALSE (see problem sheet 1).

1.4. Examples

Example 1.4.1. (The Sierpiński Space). Let X = {0, 1}, and let

T = {∅, {1}, {0, 1}}.

Then 〈X,T〉 is T0, but not T1, since {1} isn’t closed.*

Example 1.4.2. (Sequence with two limits) Let X = N ∪ {a, b}, and let T be the
topology generated by the following sets:

(a) Any Y ⊆ N,
(b) Any set of the form (n,∞) ∪ {a}, or (n,∞) ∪ {b} (intervals in N).
〈X,T〉 is T1, but not T2, since we cannot find disjoint open sets U ∋ a and V ∋ b.

Example 1.4.3. A space which is T3 1
2
and not T4. (Modified Tychonoff Plank)

Let W0 = N ∪ {ω}, with a topology generated by
(a) All subsets of N, and
(b) all sets of the form {ω} ∪ (n, ω).
Then W0 is compact T2: in fact, it is a convergent sequence.
Let W1 = Z ∪ {∗}, where Z is some uncountable set, with a topology generated by
(a) All subsets of Z, and

* Spaces that are T0 but not T1 are important in the theory of partial orders, and have
applications in logic, computer science, etc.
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(b) all sets of the form {∗} ∪ (Z \ F ), where F is finite.
Then W1 is compact T2.
So W0 ×W1 is compact T2, so it is T4 by Corollary 1.2.3.
Let X = W0 ×W1 \ {〈ω, ∗〉}. Then X , as a subspace of a T4 space, is T3 1

2
(Theorem

1.3.3).
However X is not normal.
For, let C = {ω} × Z, D = N× {∗}.
C and D are disjoint closed; we show that they cannot be separated by open sets.
For, suppose C ⊆ U open, D ⊆ V open.
Well, if 〈n, ∗〉 ∈ D ⊆ V , then, by definition of the product topology, there exists finite

Fn ⊆ Z such that
{〈n, ∗〉} ∪ {n} × (Z \ Fn) ⊆ V.

Let F =
⋃

n∈N
Fn; then F is countable.

Then, Z \ F =
⋂

n∈N
Z \ Fn ⊆ Z \ Fn for all n, so for each n,

{〈n, ∗〉} ∪ {n} × (Z \ F ) ⊆ V.

That is, N× (Z \ F ) ⊆ V .
Now, if z ∈ Z \F , so 〈ω, z〉 ∈ C, then there exists n such that {〈ω, z〉}∪(n,∞)×{z} ⊆

U .
Then 〈n+ 1, z〉 ∈ U ∩ V , so U ∩ V 6= ∅.

We will be meeting T3 1
2
spaces later!

2. Compactness, connectedness and convergence

We take some nice properties of [0, 1], and see how they behave: in particular, we show
that any product of compact spaces is compact (Tychonoff’s Theorem). We also work out
how to talk about convergence in general topological spaces.

2.1. Covering properties
We look at compactness a little more closely.

Definition 2.1.1. A space 〈X,T〉 is Lindelöf iff every open cover has a countable
subcover (sc. if U ⊆ T and

⋃

U = X, then there exists a countable subset V of U such that
⋃

V = X.)

Definition 2.1.2. A space 〈X,T〉 is countably compact iff every countable open cover
has a finite subcover.

Theorem 2.1.3. Every Lindelöf, countably compact space is compact.

Proof: Trivial! �

Theorem 2.1.4. A space is countably compact iff every infinite subset has a limit point.

Proof: On the problem sheets. �

Definition 2.1.5. D ⊆ X is dense iff D ⊆ X (iff each non-empty open subset hits D).
X is separable iff it has a countable dense subset.
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Theorem 2.1.6. Any Lindelöf metric space is separable.

Proof: Problem sheets. �

Theorem 2.1.7. Any separable metric space is Lindelöf.

Proof: Problem sheets. �

Corollary 2.1.8. R is Lindelöf.

Proof: Q is a countable dense set. �

2.2. Convergence, and filters
In a metric space, x ∈ A iff there is a sequence 〈xn | n ∈ N〉 on A converging to x.

This isn’t true in general. So we need a more general idea of convergence.

Example 2.2.1. Let Y be an uncountable set, let X = Y ∪{∗}, and let T be the topology
generated by the following sets:

(a) Any subset of Y ,
(b) Any set {∗} ∪ (Y \ C), where C is countable.
Then (1) ∗ ∈ Y .
For, let U ∋ ∗ be any open set. Then for some countable C,

{∗} ∪ (Y \ C) ⊆ U,

so U ∩ Y 6= ∅.
But (2) there is no sequence on Y converging to ∗.
For, let 〈xn | n ∈ N〉 be a sequence on Y . Let C = {xn | n ∈ N〉, and let U =

{∗} ∪ (Y \ C).
Then U is open round ∗, but U ∩ {xn | n ∈ N} = ∅, so xn 6→ ∗.

So what do we do?

Example 2.2.2. (An attempt to make convergence look difficult!)
Let X be a space containing a sequence 〈xn | n ∈ N〉 converging to a point x. We

define a set F of subsets of X , containing all tails of the sequence, as follows:

Y ∈ F iff xn ∈ Y, for all but finitely many n.

Now notice that if U is open and contains x, then U contains all but finitely many
xn, so U ∈ F.

A “small” element of F is like a “far-right-hand end” of the sequence 〈xn | n ∈ N〉—as
the xn get closer and closer to x, so also the small elements of F are concentrated close
to x. Note that F has the following properties:

1. ∅ /∈ F, X ∈ F.

2. F, G ∈ F⇒ F ∩G ∈ F.

3. F ∈ F, F ⊆ G⇒ G ∈ F.

9



Definition 2.2.3. F is a filter on X iff F ⊆ ℘X, and

1. ∅ /∈ F, X ∈ F.

2. F, G ∈ F⇒ F ∩G ∈ F.

3. F ∈ F, F ⊆ G⇒ G ∈ F.

Definition 2.2.4. Let X be a topological space, x ∈ X. Then the neighbourhood filter
of x, written Nx, is the set of all F ⊆ X such that x ∈ F ◦.

Proposition 2.2.5. Nx is indeed a filter.

Proof: Exercise. �

Definition 2.2.6. Let X be a topological space, x ∈ X, and F be a filter on X.
Then we say F converges to x, written F→ x, iff Nx ⊆ F.
We say x is a cluster point of x iff for all F ∈ F, x ∈ F .

There are a number of ways in which filter convergence is like the usual sort.

Proposition 2.2.7. X is Hausdorff iff every filter on x converges to at most one point.

Proof: Problem sheets. �

Theorem 2.2.8. If X is compact, then every filter has a cluster point.

Proof: Let F be a filter.
Let

F = {F | F ∈ F}.

Since F is closed under finite intersections, so does F. But recall that in a compact
space, any family of closed sets which is closed under finite intersections has non-empty
intersection.

Let x ∈
⋂

F. Well, then x ∈ F for each F ∈ F, so x is a cluster point of F. �

In doing ordinary convergence, we often want to take subsequences, because they are
more likely to converge to a single point. The corresponding idea in filter convergence is
to add more sets to a filter: to make it bigger.

The ultimate end-point in such a process is to extend the filter to an ultrafilter:

Definition 2.2.9. Suppose U is a filter on X. Then U is an ultrafilter iff for all A ⊆ X,
either A ∈ U, or X \A ∈ U.

Proposition 2.2.10. Let U be a filter on X. Then U is an ultrafilter iff it is a maximal
filter (that is, if F ⊇ U is a filter, then F = U).

Proof: ⇒) Suppose U is an ultrafilter, and F ⊃ U is a filter.
Then there exists F ∈ F \U.
Now either F ∈ U or X \ F ∈ U, by Definition 2.2.9. Since F /∈ U, X \ F ∈ U.
Now by Definition 2.2.3, clause 2, F ∩ (X \ F ) = ∅ ∈ F.
But this contradicts Defn 2.2.3 clause 1.
⇐) Suppose U is not an ultrafilter. Then there exists A such that A, X \A /∈ U.
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Let
F = {F ⊆ X | ∃U ∈ UU ∩A ⊆ F}.

Then F ⊃ U, since X ∩ A ∈ F, and F is a filter, which we can confirm by checking the
clauses of Definition 2.2.3:

(1) X ⊇ X ∩ A; and if F ∈ F, then F ∩ A 6= ∅, otherwise X \ A ∈ F by clause (3),
so ∅ /∈ F.

(2) Suppose F1 ⊇ U1 ∩ A, and F2 ⊇ U2 ∩ A, U1, U2 ∈ U. Then

F1 ∩ F2 ⊇ (U1 ∩ A) ∩ (U2 ∩A) = (U1 ∩ U2) ∩ A;

so F1 ∩ F2 ∈ F.
(3) is obvious.
So U is not a maximal filter. �

Any filter can be refined to a maximal filter:

Theorem 2.2.11. Let F be a filter on X. Then there is an ultrafilter U such that
U ⊇ F.

To prove this, we need from Set Theory:

Fact 2.2.12. (Zorn’s Lemma) Let A be a family of sets such that whenever C ⊆ A is a
non-empty chain (that is, C1, C2 ∈ C implies either C1 ⊆ C2, or C2 ⊆ C1), then

⋃

C ∈ A.
Then A has a maximal element; that is, there exists A ∈ A such that if B ∈ A and

B ⊇ A, then B = A.

Proof of Theorem 2.2.11: Let

A = {G | G is a filter on X & G ⊇ F}.

By Proposition 2.2.10, any maximal element of A is an ultrafilter extending F.
We use Fact 2.2.12 (Zorn’s Lemma) to find a maximal element of A.
We check that ZL is applicable.
Suppose that C ⊆ A is a chain. We check that

⋃

C ∈ A also.
We confirm that

⋃

C is a filter by checking the conditions of Definition 2.2.3.
(1) ∅ /∈

⋃

C, since ∅ /∈ G for any G ∈ C.
X ∈

⋃

C, since X ∈ G for all G ∈ C.
(2) Suppose F, G ∈

⋃

C. Then there exist G1, G2 ∈ C such that F ∈ G1 and G ∈ G2.
Since C is a chain, G1 ⊆ G2 or G2 ⊆ G1. Either way, there is Gi such that F, G ∈ Gi. Gi is
a filter, so F ∩G ∈ Gi, so F ∩G ∈

⋃

C.
(3) Suppose F ∈

⋃

C and F ⊆ G. Well, there is some G ∈ C such that F ∈ G. Then
G ∈ G also, so G ∈

⋃

C.
Also of course, F ⊆

⋃

C, since F ⊆ G for any G ∈ C.
So indeed

⋃

C ∈ A whenever C is a chain on A.
So by ZL, A has a maximal element, which is an ultrafilter extending F. �

Theorem 2.2.13. Let U be an ultrafilter on X, let x ∈ X. Then U→ x iff x is a cluster
point of U.
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Proof: ⇒) Trivial.
⇐) Suppose U 6→ x.
Then Nx 6⊆ U. Let U ∈ Nx \U. Then by Definition 2.2.9, X \ U ∈ U.
But U is a neighbourhood of x and U ∩ (X \ U) = ∅, so x /∈ X \ U .
Hence U does not cluster at x.

Corollary 2.2.14. If X is compact, every ultrafilter on X converges.

Proof: Theorem 2.2.13 and Theorem 2.2.8. �

Theorem 2.2.15. If every ultrafilter on X converges, then X is compact.

Proof: Let V be an open cover with no finite subcover. Let F = {F ⊆ X : ∃ a finite set
U1, . . . , Un ∈ U such that X \

⋃n
i=1

Ui ⊆ F}.
Then F is a filter, for, checking the conditions of Definition 2.2.3,
(1) ∅ /∈ F, since V has no finite subcover. X ∈ F trivially.
(2) If F1 ⊇ X \

⋃n1

i=1
U1
i ∈ F, and F2 ⊇ X \

⋃n2

i=1
U2
i ∈ F, then

F1 ∩ F2 ⊇ X \

(

n1
⋃

i=1

U1
i ∪

n2
⋃

i=1

U2
i

)

∈ F

also.
(3) is trivial.
Now extend F to an ultrafilter U.
If U → x, then Nx ⊆ U. But V is an open cover, so there exists V ∈ V such that

x ∈ V . Then V ∈ Nx. But X \ V ∈ F ⊆ U. So by clause (2), V ∩ (X \ V ) = ∅ ∈ U. But
this contradicts clause (1).

So U is an ultrafilter that does not converge, as required. �

Finally,

Theorem 2.2.16. If f : X → Y is an onto function and U is an ultrafilter on X, then

f(U) = {f(U) : U ∈ U}

is an ultrafilter on Y .

Proof: We check the clauses of Definition 2.2.3.
(1) If U ∈ U, then U 6= ∅, so f(U) 6= ∅; so ∅ /∈ f(U).
Y = f(X) ∈ f(U), since X ∈ U.
(3) If F = f(U) ∈ f(U) and G ⊇ F , then f−1(G) ⊇ f−1(F ) ⊇ F , so f−1(G) ∈ U.
So G = f

(

f−1(G)
)

∈ f(U).
(2) If F1 = f(U1) and F2 = f(U2), and U1, U2 ∈ U, then U1 ∩ U2 ∈ U, so

f(U1 ∩ U2) = {f(x) | x ∈ U1 ∩ U2}

⊆ {y | y ∈ f(U1) ∩ f(U2)}

= f(U1) ∩ f(U2).
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So f(U1) ∩ f(U2) ∈ f(U).
Finally, f(U) is an ultrafilter, because if A ⊆ Y , then f−1(Y \A) = X \ f−1(A); since

U is an ultrafilter, one of f−1(A) and X \ f−1(A) belongs to U; and now since f is onto,
f(f 1(A)) = A and f(f−1(Y \A)) = Y \A, so one of A and Y \A belongs to f(U). �

Theorem 2.2.17. If f : X → Y is onto, then f is continuous at x ∈ X iff whenever U
is an ultrafilter on X converging to x, f(U)→ f(x).

Proof: Problem sheets. �

2.3. Infinite Products and Tychonoff’s Theorem
Recall that the product topology on a product X×Y is generated by products U×V ,

where U is open in X and V is open in Y .
Equivalently, by products U × Y and X × V , for U open in X and V open in Y .
Equivalently, by πY

−1(U), πX
−1(V ).

Equivalently, it is the coarsest topology such that πX and πY are continuous.
Recall also that if X and Y are compact, then so is X × Y .
We seek to generalise the above to infinite products.

Definition 2.3.1. Let 〈Xλ : λ ∈ Λ〉 be a family of sets. The Cartesian product
∏

λ∈Λ

Xλ

is the set of all functions f with domain Λ such that f(λ) (“the λth coordinate of f”) is
in Xλ.

If λ ∈ Λ, the λth projection mapping πλ is the function πλ :
∏

λ∈Λ
Xλ such that

πλ(f) = f(λ)—picking out the λth coordinate.

Definition 2.3.2. Let
〈

〈Xλ,Tλ〉 : λ ∈ Λ〉
〉

be a family of topological spaces. We define
their Tychonoff product 〈X,T〉 such that

1. X =
∏

λ∈Λ

Xλ,

2. T is the coarsest topology such that all πλ are continuous.
Equivalently, T is generated by all πλ

−1(Uλ), such that λ ∈ Λ and Uλ is open in Xλ.
Note that

πλ
−1(Uλ) = Uλ ×

∏

µ6=λ

Xµ;

these sets form a subbasis.
Equivalently, T is generated by the basis of all sets

∏

λ∈Λ
Uλ, where

a) each Uλ is open in Xλ,
b) for all but finitely many λ, Uλ = Xλ.

� It is not the case that every subset of a product X × Y is of the form A×B.

� It is also not the case that every open subset of a product X × Y is of the form U × V .

� It is very much not the case that every closed subset of a product X ×Y is an intersection
of rectangles of the form C ×D.

It is a nice exercise to find counterexamples to all these from R
2.

Theorem 2.3.3. If i ≤ 3 1

2
and each X is Ti, then their Tychonoff product is Ti.

13



Proof: Omitted. (See problem sheet.) �

Theorem 2.3.4. (Tychonoff’s Theorem) Suppose 〈Xλ : λ ∈ Λ〉 is a family of non-empty
spaces. Then

∏

λ∈Λ
Xλ is compact iff Xλ is compact for every λ.*

Proof: ⇒) Since πλ is continuous, and onto, Xλ is the continuous image of a compact
space and is therefore compact.
⇐) Suppose all Xλ are compact. We show that

∏

λ∈Λ
Xλ is compact by showing that

every ultrafilter converges, and appealing to Theorem 2.2.15.
Let U be an ultrafilter on

∏

λ∈Λ
Xλ.

Then, for each λ, πλ(U) is an ultrafilter on Xλ. Xλ is compact, so πλ(U) converges to
some point. We define a function f on Λ such that f(λ) is some element of Xλ to which
πλ(U) converges.

So f ∈
∏

λ∈Λ
Xλ.

We show that U→ f .
We need to show that Nf ⊆ U.
So, let N be a neighbourhood of f ; and let

∏

λ∈Λ
Uλ be a basic open set such that

f ∈
∏

λ∈Λ
Uλ ⊆ N .

By Definition 2.3.2, Uλ = Xλ for all but finitely many λ. Say Uλ = Xλ unless
λ = λ1, . . . , λn.

Now Uλ = πλ(
∏

λ∈Λ
Uλ), and so for each i = 1, . . . , n, since πλi

(U) → f(λi), Uλi
,

which is a neighbourhood of f(λi), belongs to πλi
(U).

Let us say Uλi
= πλi

(Vλi
), where Vλi

∈ U.

Then Vλi
⊆ πλi

−1(Uλi
) = Uλi

×
∏

µ6=λi

Xµ.

By clause (3) in the definition of a filter at Definition 2.2.3,

Uλi
∩
∏

µ6=λi

Xµ ∈ U.

By clause (2),

n
⋂

i=1

Uλi
×
∏

µ6=λi

Xµ ∈ U

=
n
∏

i=1

Uλi
×

∏

µ6=λ1,...,λn

Xµ

=
∏

λ∈Λ

Uλ.

So now, since
∏

λ Uλ ⊆ N , by Definition 2.2.3 clause (3), N ∈ U as required. �

* Tychonoff’s Theorem is in fact equivalent to the Axiom of Choice. It is a nice exercise
to try to prove this.
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2.4. Compactifications
Compact T2 spaces are nice. But nearly as nice are subspaces of such.
Recall (Theorems 1.2.1 and 1.2.2) that any compact T2 space is T4; and (Theorem

1.3.3) that any subspace of a T4 space is T3 1
2
.

So only T3 1
2
spaces have a hope of being embeddable in a compact T2 space. How far

can we go in the other direction?
We formalise the concept that we are after.

Definition 2.4.1. Let X be a space. A Hausdorff compactification of X is a pair 〈h, Y 〉
such that

1. Y is a compact T2 space,
2. h : X → Y has the following properties:

a) h is one-to-one,
b) h is a homeomorphism from X to h(X),

c) h(X) is dense in Y (ie. h(X) = Y ).

Often one identifies X with its image under h, so simply imagines X as sitting inside
a compactification.

We now define a condition designed to guarantee the existence of a compactification.

Definition 2.4.2. A topological space is locally compact iff for all x ∈ X and open
U ∋ x, there exists open V and compact K such that x ∈ V ⊆ K ⊆ U .

To make life slightly easier:

Proposition 2.4.3. A T2 space X is locally compact iff for all x ∈ X, there exists open
W ∋ x such that W is compact.

Proof: ⇒) Use local compactness to find V open and K compact such that x ∈ V ⊆ K.
Since X is Hausdorff, K is closed. So V ⊆ K. But K is compact, so V closed implies that
V is compact.
⇐) Trivial. �

Definition 2.4.4. Let X be a Hausdorff locally compact non-compact space. Then the
Alexandroff one-point compactification of X is the pair 〈h, αX〉 defined as follows:

1. αX is a topological space with points X ∪ {∗}, such that U is open iff
a) U is open in X, or
b) ∗ ∈ U , and X \ U is compact.

2. h : X → X ∪ {∗} is the identity.

Example 2.4.5. X = R
2.

Theorem 2.4.6. Suppose X is a Hausdorff locally compact non-compact space. Then
the Alexandroff one-point compactification is a Hausdorff compactification.

Proof: Quite obviously, h is one-to-one. onto its image.
X is a subspace, since if X \ U is compact, then X \ U is closed in X because X is

Hausdorff, so U ∩X is open in X . Hence h is a homeomorphism onto its image.
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X is dense in αX , because if U is any non-empty open set, either U ⊆ X—so U ∩X 6=
∅,—or X \ U is compact. But X is not compact, so X 6= X \ U , so X ∩ U 6= ∅.

Now we show that αX is a Hausdorff compactification.
αX is T2 Let x and y be different points of αX .
Case 1: x, y ∈ X . Well X is T2: find U and V disjoint open in X such that x ∈ U

and y ∈ V . Then U and V are also open in αX .
Case 2: x ∈ X , y = ∗. Find U open in X such that x ∈ U , and U is compact. Let

V = αX \ U . Then U and V are open in αX , x ∈ U , y ∈ V , and U ∩ V = ∅.
αX is compact Let U be an open cover. We find a finite subcover.
First find U0 ∈ U such that ∗ ∈ U0.
By definition of the topology, X \ U0 is compact.
Now find U1, . . . , Un ∈ U covering X \ U0.
Then {U0, . . . , Un} is a finite subcover of αX . �

Corollary 2.4.7. Any Hausdorff locally compact space is T3 1
2
.

Often there are many compactifications. We can define an order on them as follows:

Definition 2.4.8. Suppose 〈h, γX〉, 〈k, δX〉 are Hausdorff compactifications of a T3 1
2

space X.
We say γX ≤ δX iff there exists f : δX → γX such that

γX
f
←− δX

h
x

 ր k

X

—so if h, k are inclusion maps, then f↾X = id.

Note that f(k(X)) = h(X), which is dense. δX is compact, so f(δX) is compact, so
closed. So h(X) ⊆ f(δX), so γX = h(X) ⊆ f(δX). So f is onto.

Lemma 2.4.9. If Y is a subset of a compact T2 space X, then Y is locally compact iff it
can be expressed in the form V ∩ F , where V is open and F is closed.

Proof: Problem sheets. �

Corollary 2.4.10. If X is locally compact and 〈k, δX〉 is a Hausdorff compactification
of X, then k(X) is open in δX.

Proof: Note that if X is locally compact, then k(X) can be written V ∩ F , where F is
closed and V is open in δX . Since F is closed, it must include k(X) = δX , so of course
F = δX . Thus k(X) = V , and is open in δX . �

Theorem 2.4.11. Suppose X is a Hausdorff locally compact non-compact space. Then
αX is the minimal compactification of X.

Proof: Given 〈h, αX〉, let 〈k, δX〉 be another compactification. Define f : δX → αX as
follows :

1. f(k(x)) = h(x) for all x ∈ X ,
2. If y ∈ δX \ k(X), then f(y) = ∗.
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We show that f is continuous, by showing that if U is open in αX , then f−1(U) is open
in δX .

Case 1. U ⊆ X . Then f−1(U) = k(U) ⊆ k(X). But k(X) is open in δX and k(U) is
open in k(X), so k(U) is open in δX as required.

Case 2. ∗ ∈ U , and X \ U is compact. Then f−1(U) = δX \ k(X \ U).
Now k(X \ U) is compact, so closed since δX is T2.
So f−1(U) is open, as required. �

We can find similar relationships between compactifications of different spaces. We
first define some more terminology.

Definition 2.4.12. Let f : X → Y be continuous and onto. Then f is proper iff f is
closed, and has compact fibres.

Lemma 2.4.13. Let f : X → Y be proper. Then
1. X is locally compact iff Y is locally compact;
2. If X is T2, so is Y ;
3. If Y is compact, so is X.

Proof: Problem sheets. �

Proposition 2.4.14. If X is a Hausdorff locally compact space, and f : X → Y is
proper, then we can extend f to a proper map g : αX → αY such that the following
diagram commutes:

X →֒ αX

f


y



yg

Y →֒ αY

Proof: Define g(∗X) = ∗Y .
We require to show that g is proper.
1. g is continuous: let U ⊆ αY be open. We show that g−1(U) is open.
Case 1 U ⊆ Y . Then g−1(U) = f−1(U) which is open in X since f is continuous. By

Corollary 2.4.10, X is open in αX ; so f−1(U) is open in αX .
Case 2 ∗Y ∈ U , and Y \ U is compact.
Then g−1(U) ∋ ∗X , and X \ g−1(U) = X \ f−1(U) = f−1(Y \ U .
Now by Lemma 2.4.13, f−1(Y \ U) is compact.
So X \ g−1(U) is compact, so g−1(U) is open.
2. g is onto: this is clear.
3. g is proper: g is closed, because if C is closed in αX , then C is compact because

αX is compact; g is continuous, so g(C) is compact; αY is Hausdorff so g(C) is closed.
g has compact fibres, because if x ∈ αY , then {x} is closed, because αY is Hausdorff,

so g−1({x}) is closed, because g is continuous, and so since αX is compact, g−1({x}) is
compact. �

Corollary 2.4.15. If X is Hausdorff and locally compact, f : X → Y is proper, and
〈k, δX〉 is a Hausdorff compactification of X, then f can be extended to a proper map g as
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follows:

X
k
−→ δX

f


y



yg

Y →֒ αY

Proof: Exercise, using the diagram:

X
k
−→ δX

∥

∥



yg1 (Theorem 2.4.11)

X →֒ αY

f


y



yg2 (Prop 2.4.14)

Y →֒ αY

�

Definition 2.4.16. (The Stone-Čech compactification) Let X be a T3 1
2
space.

Let 〈fλ : λ ∈ Λ〉 be all bounded functions from X to R; for each λ, let Iλ be the
smallest closed interval including the range of fλ (ie Iλ = [inf ranfλ, sup ranfλ]).

Let Y be the Tychonoff product
∏

λ∈Λ
Iλ.

Define h : X → Y by
h(x)(λ) = fλ(x) for all λ.

Let βX = h(X)
Y
.

Then 〈h, βX〉 is the Stone-Čech compactification of X.

Theorem 2.4.17. 〈h, βX〉 is a Hausdorff compactification.

Proof: We show
1. h is one-to-one,
2. h is continuous,
3. h−1 is continuous (so h is a homeomorphism from X to h(X)),
4. βX is compact T2 and h(X) is dense in it.
1. h is one-to-one: let x 6= y be elements of X .
X is T1, so {y} is closed. X is T3 1

2
, so {x} can be functionally separated from {y}

(Definition 1.2.5).
So, let f : X → [0, 1] be a continuous function such that f(x) = 0 and f(y) = 1. Then

f is bounded, so f = fλ for some λ.
Now h(x)(λ) = fλ(x) = 0, and h(y)(λ) = fλ(y) = 1. So h(x) 6= h(y), as required.
2. h is continuous: we show that for all U in some subbasis, h−1(U) is open. (See

Lemma 1.2.9.)
Note that the following sets yield and subbasis for Y =

∏

λ∈Λ
Iλ:

Uλ ×
∏

µ6=λ

Iµ, where Uλ ⊆ Iλ is open.
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Let U = Uλ ×
∏

µ6=λ Iµ.
Then

h−1(U) = {x | h(x) ∈ U}

= {x | h(x)(λ) ∈ Uλ}

= {x | fλ(x) ∈ Uλ}

= f−1(Uλ),

which is open, as fλ is continuous.
3. h−1 is continuous on h(X). Let U ⊆ X be open. We attempt to show that h(U)

is open in h(X). We do this by showing that for each h(x) ∈ h(U), there is an open set V
in Y such that h(x) ∈ V ∩ h(X) ⊆ h(U).

For, let C = X \ U . C is closed and X is T3 1
2
, so let f : X → [0, 1] be a continuous

function with f(x) = 0 and f(C) ⊆ {1}.
Then f−1(−∞, 1) ⊆ U .
For some λ, f = fλ.
Now let

V =
(

(−∞, 1) ∩ Iλ
)

×
∏

µ6=λ

Iµ.

Then V is open in Y .
Also, if p ∈ V ∩ h(X), say p = h(y), then fλ(y) = h(y)(λ) ∈ (−∞, 1). So y ∈ U , and

p = h(y) ∈ h(U).
So, as required, h(x) ∈ V ∩ h(X) ⊆ h(U), and V ∩ h(X) is open in h(X).
4. Y is a product of T2 spaces and is therefore T2; so βX , as a subspace of a Hausdorff

space, is Hausdorff.

Finally, by Tychonoff’s Theorem (Theorem 2.3.4), Y is compact. Hence βX = h(X)
Y

is compact.

Obviously h(X) is dense in h(X)
Y
.

We have now completed the proof that 〈h, βX〉 is a Hausdorff compactification. �

Theorem 2.4.18. Let f : X → R be any bounded continuous function. Then there exists
a continuous function βf : βX → R such that the following diagram commutes:

X
f
−→ R

h


y ր βf

βX

Proof: Let f = fλ.
Define βf as follows: βf(p) = p(λ), for each p ∈ βX .
This function, being the restriction of the projection function πλ to βX , is continuous.

And if x ∈ X ,
βf(h(x)) = h(x)(λ) = fλ(x) = f(x),

19



as required. �

Corollary 2.4.19. Let Z =
∏

µ∈M Iµ, where each Iµ is a compact interval in R. Then
whenever f : X → Z is continuous, there exists a continuous function βf : βX → Z such
that the following diagram commutes:

X
f
−→ Z

h


y ր βf

βX

Proof: Simply do this coordinatewise.
Let fµ : X → Iµ be defined so that fµ(x) = f(x)(µ); so fµ is the composition of f

with the µ’th projection map on Z.
Then fµ is continuous. So, let βfµ be as in the conclusion of Theorem 2.4.18.
Then, define βf : X → Z by

βf(x)(µ) = βfµ(x).

We show that βf is continuous.
A subbasic open set in Z has the form

Uµ×
∏

ν 6=µ

Iν ,

where Uµ is open in Iµ. Then

βf−1
(

Uµ ×
∏

ν 6=µ

Iν

)

=
{

x
∣

∣

∣
βf(x) ∈ Uµ ×

∏

ν 6=µ

Iν

}

= {x | βf(x)(µ) ∈ Uµ}

= {x | βfµ(x) ∈ Uµ}

= (βfµ)
−1

(Uµ),

which is open, as βfµ is continuous. �

Lemma 2.4.20. Any T3 1
2
space is homeomorphic to a subspace of a product of closed

intervals.

Proof: Examine the proof of Theorem 2.4.17: if X is T3 1
2
and 〈h, βX〉 is its Stone-Čech

compactification, then h : X → βX is an embedding of X in a product of closed intervals.
�

Theorem 2.4.21. (The Stone-Čech Property) Let X be T3 1
2
, K a compact T2 space (and

therefore T3 1
2
). Let f : X → K be continuous. Then there exists a continuous function

βf : βX → K such that the following diagram commutes:

X
f
−→ K

h


y ր βf

βX
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Proof: Embed K in a product Z of closed intervals. Then by Corollary 2.4.19, βf can
be defined as a continuous function into Z such that the diagram

X
f
−→ Z

h


y ր βf

βX

commutes. Now note that βf−1(K) is a closed set containing h(X). Therefore, βf−1(K) =
βX , and so βf : βX → K, and the proof is complete. �

Theorem 2.4.22. Suppose 〈k, γX〉 is a compactification with the Stone-Čech property.
Then γX ≤ βX ≤ γX; and the two compactifications are homeomorphic.

Thus, 〈h, βX〉 is the unique compactification with the Stone-Čech property.

Proof: We use the Stone-Čech property on βX and γX to define continuous functions
βk and γh to make the following diagram commute:

βX
βk
⇀↽
γh

γX

h
x

 ր k

X

Now γh ◦ βk is a continuous function from βX to itself, and is equal to the identity on a
dense set, namely h(X); so γh ◦ βk is the identity. Likewise βk ◦ γh is the identity on γX .
So the maps βk and γh are each other’s inverses.

Thus γX ≤ βX ≤ γX , and βX and γX are homeomorphic. �

Theorem 2.4.23. 〈h, βX〉 is the maximal compactification of a T3 1
2
space X.

Proof: Exercise, using the Stone-Čech property. �

� So, NEVER use the definition of the Stone-Čech property. While it’s not incorrect to do
so, it is virtually ALWAYS simpler to use the Stone-Čech property.

As an example of an application of the Stone-Čech compactification (neither the state-
ment of the theorem nor the proof is on the syllabus):

Theorem 2.4.24. (Finite Sums Theorem) Suppose N is the disjoint union of sets
A1, . . . , An. Then there exists i ∈ {1, . . . , n}, and there exists an infinite subset B of Ai,
such that any sum of distinct elements of B lies in Ai. (That is, if m1, . . . , mk ∈ B, then
m1 + · · ·+mk ∈ Ai.)

Sketch proof: (Details on a handout) Extend the operation of addition on N to the
Stone-Čech compactification βN.*

* There is an irritating technical hitch. The function P : 〈a, b〉 7→ a + b is a binary
function (a function of two variables). So one can define βP , but it turns out not to be
continuous, but to have the weaker property of being continuous on one side only (ie. as a
function of the second argument). One needs a certain amount of care to get around this.
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Then there exists p ∈ βN \ h(N) such that p+ p = p.
Now there exists unique i ∈ {1, . . . , n} such that p ∈ h(Ai), which is a clopen set.
Using the fact that p+p = p, carefully choose a sequence B from Ai having the desired

property; intuitively, if the elements of B are close enough to p, then their sum is inside
the clopen neighbourhood h(Ai), and this is enough. �

2.5. Connectedness and local connectedness
First, an important notion for reasoning about connectedness.

Definition 2.5.1. Define an equivalence relation on a topological space X by: x ∼ y iff
there exists a connected subset C of X such that x, y ∈ C.

We define the component of x to be the equivalence class of x under this relation.

Proposition 2.5.2. The component of a point x in a topological space is the largest
connected set containing x.

All components are closed.

Definition 2.5.3. X is locally connected iff for all x ∈ X, for all open U ∋ x, there
exists connected C and open V such that x ∈ V ⊆ C ⊆ U .

Theorem 2.5.4. X is locally connected iff every component of every open set is open.

Proof: ⇐) Trivial.
⇒) Let U be open, C a component of U . Let x ∈ C. Then there exists open V and

connected D such that x ∈ V ⊆ D ⊆ U . But if C is a component of U , then D ⊆ C. So
x ∈ V ⊆ C—so C is open. �

Corollary 2.5.5. If X is locally connected, then each component of X is clopen.

Proof: Apply Theorem 2.5.4 to X ; components are closed. �

Example 2.5.6. The topologist’s sine curve, which is connected but not locally connected.

Recall that in general, components are not clopen. (Consider Q.) Also connectedness
is defined in terms of clopen sets. So the following seems plausible:

Guess 2.5.7. Each component is an intersection of clopen sets.

Is this true?

Definition 2.5.8. The quasi-component of x in a space X is the intersection of all
clopen sets containing x.

Proposition 2.5.9. Quasi-components are closed.

Proof: A quasi-component is an intersection of closed sets. �

Theorem 2.5.10. The quasi-components of X partition X.

Proof: We require to show that if Q(x) 6= Q(y), then Q(x) ∩Q(y) = ∅.
Suppose Q(y) 6⊆ Q(x). Say z ∈ Q(y) \Q(x).
Then there exists a clopen set C containing x such that z /∈ C. Now if y ∈ C, then

z /∈ Q(y). So y /∈ C; so X \ C ⊇ Q(y) (since X \ U is a clopen set containing y).
Now C ⊇ Q(x); so Q(x) ∩Q(y) = ∅. �
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Theorem 2.5.11. If x is an element of a topological space X, then the componenent of
x is contained in the quasi-component of x.

Proof: Suppose y /∈ Q(x). We show that there does not exist a connected set C
containing both x and y.

For, there exists U clopen such that x ∈ U and y /∈ U . So, if C contains x and y,
U ∩ C is clopen in C and splits x apart from y, disconnecting C.

So y is not in the component of x. �

Example 2.5.12. There exists a space in which components and quasi-components are
different. (Problem sheets)

Theorem 2.5.13. (Šura-Bura Lemma) In any compact Hausdorff space, components
and quasi-components coincide.

Proof: It is necessary and sufficient to show that quasi-components are connected.
So, suppose that D is a quasi-component that is not connected.
Then D can be partitioned into sets E and F which are clopen in D.
Now, E and F closed in D implies that E and F are closed.
Since X is compact and Hausdorff, it is normal. So, let U and V be disjoint open sets

in X such that E ⊆ U and F ⊆ V .
So D ⊆ U ∪ V .
Now let

C = {C | C is clopen, D ⊆ C}.

Let
U = {X \ C | C ∈ C} = {U clopen | U ∩D = ∅}.

Since D =
⋂

C, X \D =
⋃

U.
So U ∪ {U, V } is an open cover of X .
Let U1, . . . , Un ∈ U be such that {U, V, U1, . . . , Un} covers X .
Now let Ui = X \ Ci; then Ci is a clopen set including D.
So D ⊆ G ⊆ U ∪ V , where G =

⋂n
i=1

Ci; and G is clopen.
Now U ∩ V = ∅, so U ∩G and V ∩G partition G and so are clopen in G.
So, U ∩G and V ∩G are clopen.
Now U ∩ G is a clopen set splitting D. So D cannot after all be a quasi-component,

� . �

3. Metric spaces

3.1. Metrisation
What conditions are sufficient to ensure that a topological space possesses a compatible

metric?

Definition 3.1.1. A topological space 〈X,T〉 is metrisable iff there exists a metric d on
X such that T is the metric topology of X.

Theorem 3.1.2. Let X be a Lindelöf T3. Then X is normal (so T4).
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Proof: Let C and D be disjoint and closed.
For each y ∈ D, let Ay and Vy be disjoint open sets such that C ⊆ Ay, y ∈ Vy.
Let {Vyi

: i ∈ N} be a countable subcover of D (exercise: every closed subset of a
Lindelöf space is Lindelöf).

Similarly, for x ∈ C, let Ux and Bx be disjoint and open sets such that x ∈ Ux and
D ⊆ Bx; let {Uxi

: i ∈ N} be a countable subcover of C.
Notice that since Uxi

∩ Bxi
= ∅, Uxi

∩ Bxi
= ∅ also; so Uxi

∩ D = ∅. Similarly
Vyi
∩ C = ∅.
Now, we recursively construct open sets Sn and Tn with the following properties:

1. For all i, Si ⊆ Uxi
;

2. For all j, Tj ⊆ Vyj
;

3. For all i, Si ∩D = ∅;

4. For all j, Tj ∩ C = ∅;

5. If i ≤ j, then Si ∩ Tj = ∅;

6. If j < i, then Tj ∩ Si = ∅;
7. For all i, Si ∩ C = Uxi

∩ C;
8. For all j, Tj ∩D = Vyj

∩D.

In this list, 3. and 4. follow from 1. and 2. We perform the recursion but proceeding as
follows. Suppose Si and Ti have been defined for all i < n.

Then we let

Sn = Uxn
\

n−1
⋃

j=1

Tj ;

and

Tn = Vyn
\

n
⋃

i=1

Si.

Properties 1.–8. are now easy to check; and we observe that they trivially imply that for
all i and j, Si and Tj are disjoint.

Now let U =
⋃∞

i=1
Si, and V =

⋃∞
j=1

Tj .
Then U and V are open and disjoint, C ⊆ U and D ⊆ V . �

Corollary 3.1.3. Every Lindelöf T3 space is T3 1
2
.

Definition 3.1.4. X is first countable, written 1◦, iff for each x ∈ X, there exists a
sequence 〈Un | n ∈ N〉 of open sets such that for all open U ∋ x, there exists n such that
x ∈ Un ⊆ U .

Definition 3.1.5. X is second countable, written 2◦, iff X has a countable basis.

Theorem 3.1.6. Every second countable space is Lindelöf.

Proof: Trivial. Let B = 〈Bn | n ∈ N〉 be a countable basis. Let U be an open cover.
For each n, define Un ∈ U to be some open set in U such that Bn ⊆ Un, if such exists.
Let V = {Un | Un exists}. V is a countable subfamily of U.
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We show that it is a subcover. Suppose x ∈ X . Then there exists U ∈ U such that
x ∈ U . Since B is a basis, there exists n such that x ∈ Bn ⊆ U . So Un exists. Then
x ∈ Un ∈ V.

So V is a countable subcover. �

Lemma 3.1.7. The Tychonoff product
∏

n∈N
[0, 1] is a metric space.

Proof: Problem sheets. �

Theorem 3.1.8. (Urysohn’s Metrisation Theorem) If X is T3 and second countable,
then X is separable and metrisable.

Proof: Let B be a countable basis. Then B×B is countable, and thus so is

E =
{

〈B,B′〉 ∈ B×B
∣

∣ B ⊆ B′
}

.

Enumerate E as E = {〈Bn, B
′
n〉 | n ∈ N}.

We embed X homeomorphically in
∏

n∈N
[0, 1] as follows, and deduce that it is a metric

space:
X is T4, so by Urysohn’s Lemma, Bn and B′

n can be functionally separated by con-
tinuous function fn : X → [0, 1]. Now define Φ : X →

∏

n∈N
[0, 1] thus:

Φ(x)(n) = fn(x).

We wish to show that Φ is a homeomorphism.
Φ is one-to-one: Suppose x 6= y. Then since X is T1, there exists open U such that

x ∈ U but y /∈ U .
Since X is T3, there exists open V and basic open B and B′ such that

x ∈ B ⊆ V ⊆ V ⊆ B′ ⊆ U.

Then B ⊆ B′, so 〈B,B′〉 ∈ E.
Let 〈B,B′〉 = 〈Bn, B

′
n〉.

Then fn functionally separates Bn fromX\B′
n; in particular, fn(x) = 0 and fn(y) = 1,

so that Φ(x)(n) 6= Φ(y)(n), so Φ(x) 6= Φ(y).
Φ is continuous: Let Un ×

∏

m 6=n[0, 1] be a subbasic open set.
Then

Φ−1

(

Un ×
∏

m 6=n

[0, 1]

)

=

{

x

∣

∣

∣

∣

Φ(x) ∈ Un ×
∏

m 6=n

[0, 1]

}

= {x | Φ(x)(n) ∈ Un}

= {x | fn(x) ∈ Un}

= fn
−1(Un).

But fn is continuous, so this is open.
Φ−1 is continuous: Let U be an open set in X . We show that Φ(U) is open in Φ(X).
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Let x ∈ U . We show that there is an open set V such that x ∈ V ⊆ U and Φ(V ) is
open.

Since X is T3, there exist open W and basic open B and B′ such that

x ∈ B ⊆W ⊆ W ⊆ B′ ⊆ U.

Then 〈B,B′〉 ∈ E. Let 〈B,B′〉 = 〈Bn, B
′
n〉.

Then fn functionally separates Bn from B′
n.

Let V = fn
−1([0, 1)).

Then fn(x) = 0, so x ∈ V , and if y /∈ U , then y /∈ B′
n, so fn(y) = 1, so y /∈ V ; hence

V ⊆ U .
Now

Φ(V ) = {Φ(x) | x ∈ V }

= {Φ(x) | fn(x) ∈ [0, 1)}

= {Φ(x) | Φ(x)(n) ∈ [0, 1)}

= Φ(X) ∩

(

Un ×
∏

m 6=n

[0, 1]

)

,

where Un = [0, 1); and so Φ(V ) is open in Φ(X). �

3.2. Stone’s Theorem
We discuss a particularly nice property possessed by metric spaces.

Definition 3.2.1. A family U of subsets of a space X is locally finite iff for all x ∈ X,
there exists open V ∋ x such that V ∩ U 6= ∅ for only finitely many U ∈ U.

Definition 3.2.2. If U and V are covers of X, then U refines V, or is a refinement of
it, written U ≺ V, iff ∀U ∈ U∃V ∈ VU ⊆ V .

Definition 3.2.3. A space X is said to be paracompact iff every open cover has a locally
finite open refinement.

Definition 3.2.4. A collection U of sets is closure-preserving iff for every V ⊆ U,

⋃

V =
⋃

V ∈V

V .

Lemma 3.2.5. Suppose U is locally finite. Then U is closure preserving.

Proof: Let V ⊆ U. Let x /∈
⋃

V ∈V V .

We show x /∈
⋃

V.
Let A ∋ x be open such that A ∩ U 6= ∅ for just finitely many U ∈ U.
Then there are just finitely many elements V1, . . . , Vk of V such that A ∩ Vi 6= ∅.
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For all i x /∈ Vi; so x /∈
⋃

i Vi, which is closed; so

B = A \
⋃

i

Vi

is open and x ∈ B.
Also for all V ∈ V, either V = Vi for some i ≤ k, so that B ∩ V = ∅; or A ∩ V = ∅,

so B ∩ V = ∅ also.
So x ∈ B, B is open, and B ∩

⋃

V = ∅. So x /∈
⋃

V as required. �

Theorem 3.2.6. Every paracompact Hausdorff space is regular.

Proof: Let V ⊆ U. Let x /∈
⋃

V ∈V V .
For y ∈ C, find Uy ∋ x and Vy ∋ y such that Uy ∩ Vy = ∅.
Let

U = {Vy : y ∈ C} ∪ {X \ C}.

Then U is an open cover of X .
Let V be a locally finite open refinement; let

V

′ = {V ∈ V | V ∩ C 6= ∅}.

Now if V ∈ V, then for some U ∈ U, V ⊆ U . Clearly V 6⊆ X \ C.
So V ⊆ Vy for some y. Hence V ∩ Uy = ∅; Uy ∋ X open implies that x /∈ V .

So x /∈
⋃

V ∈V′ V ; so x /∈
⋃

V ∈V V .
Let W =

⋃

V ∈V′ V . Then W is open. Also, W ⊇ C.

Let U = X \W ; then x ∈ U , and U and W are disjoint. �

Theorem 3.2.7. Every paracompact T3 space is normal.

Proof: Problem sheets. �

Theorem 3.2.8. The following are equivalent:
1. X is paracompact;
2. Every open cover has a locally finite open refinement;
3. Every open cover has a locally finite closed refinement.

Proof: Problem sheets. �

Theorem 3.2.9. X is paracompact iff every open cover has a σ-locally finite open
refinement; that is, for every open cover U, there exists a refinement V of U such that V
can be expressed as a union

⋃

n∈N
Vn, where each Vn is locally finite.

Proof: ⇒) Trivial.
⇐) Let U be an open cover, V =

⋃

n∈N
Vn a σ-locally finite open refinement. We find

a locally finite refinement W (not necessarily open), and use Theorem 3.2.8.
Let An = X \

⋃⋃

m<n Vm.
Then {An | n ∈ N} is locally finite, since for all x, there exists n such that x ∈

⋃⋃

m<n Vm, and this open set witnesses local finiteness of the family {An | n ∈ N}.
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Also, A0 = X , and
⋂

n∈N
An = ∅.

Now let
W = {V ∩ An | V ∈ Vn, n ∈ N}.

Then W is a cover, for if x ∈ X , let n be least such that x ∈
⋃

Vn. Then there exists
V ∈ Vn such that x ∈ V ; also, x ∈ An. So x ∈ V ∩ An, which is an element of W.

Also, if x ∈ V =
⋃⋃

m<n Vm, then for each m < n, let the open neighbourhood Fm

of x witness local finiteness of Vm at x. Let us say that the only elements of Vm that Fm

meets are Vm,1, . . . , Vm,km
.

Then V ∩
⋂

m<n Fm witnesses local finiteness of W near x, since the only elements of
W that it meets are the elements

Vm,i ∩Am,

for m < n and i < km. �

Definition 3.2.10. Let Y be a set. Then the relation ≤ is a well-ordering of Y iff

1. ≤ is a total order of Y , and
2. Every non-empty subset of Y has a ≤-least element.

Define segy to be {z ∈ Y | z < y}.

Theorem 3.2.11. (Recursion on a well-ordering) Suppose ≤ is a well-ordering on Y , A
is a set, and, for each y ∈ Y , Φy : Asegy → A.

Then there exists a unique function f : Y → A such that for all y ∈ Y , f(y) =
Φy(f↾segy).

Proof: Standard theorem of set theory. �

Fact 3.2.12. For every set Y , there exists a relation ≤ which is a well-ordering of Y .

Theorem 3.2.13. (Stone) Every metric space is paracompact.

Proof: Let 〈X, d〉 be a metric space. We show that every open cover of X has a σ-locally
finite open refinement, and then appeal to Theorem 3.2.9.

Let U be an open cover. Let ≤ be a well-ordering of U.
For each n ∈ N, U ∈ U, we construct a set Vn,U by recursion such that

1 D(Vn,U , X \ U) =
1

2n
, and

2 If U 6= U ′, then D(Vn,U , Vn,U ′) ≥
1

2n+1
,

where if A, B are any disjoint subsets of X ,

D(A,B) = inf
x∈A,
y∈B

d(x, y).

Suppose we have constructed Vn,U ′ for U ′ ≤ U . Then we let

Vn,U =

{

y ∈ U

∣

∣

∣

∣

∣

D({y}, X \ U) >
1

2n
, D

(

{y},
⋃

U ′<U

Vn,U ′

)

<
1

2n+1

}

.
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We have a number of things to prove.
1. Vn,U is open. This is because D is continuous.
2. Vn = {Vn,U | U ∈ U} is locally finite.
But for all y, B 1

2n+2
(y) meets at most one Vn,U , since if U ′ < U and z ∈ Vn,U ,

1

2n+1
< D

(

{z},
⋃

U ′<U

Vn,U ′

)

≤ D({z}, X \ Vn,U ′).

Hence B 1

2n+2
(y) cannot meet both Vn,U and Vn,U ′ .

3. V =
⋃

n∈N
Vn is a cover.

Let x ∈ X . Let W = {U ∈ U | x ∈ U}. W is non-empty; let U be the ≤-least element.
Choose n such that Bn(x) ⊆ U ; so D({x}, X \ U) > 1

2n . Also, for U ′ < U , x /∈ U ′ by

minimality of U ′, so D

(

y
⋃

U ′<U Vn,U ′

)

≥ 1

2n , since x /∈ X \
⋃

U ′<U U
′. Hence x ∈ Vn,U ′ .

4. V is a refinement of U. This is trivial.
So V is a σ-locally finite open refinement of U, and so we are done. �

4. Stone duality

4.1. Boolean algebras

Definition 4.1.1. A Boolean algebra is a tuple 〈B,≤,∧,∨,¬,�, �〉 such that:

1. 〈B,≤〉 is a partial order,
2. ∧ and ∨ are binary operations on B, ¬ is a unary operation, and �, � ∈ B,
3. � is the least element of B and � is the greatest,
4. for all a, b ∈ B, a ∧ b = max{c ∈ B : c ≤ a, b},
5. for all a, b ∈ B, a ∨ b = min{c ∈ B : c ≥ a, b},
6. ∧ and ∨ are distributive over each other,
7. for all a ∈ B, a ∧ ¬a = � and a ∨ ¬a = �.

Examples 4.1.2. 1. Let X be any set. Then 〈℘X,⊆,∩,∪, X \ ·,∅, X〉 is a Boolean
algebra.

2. The two-element Boolean algebra: B = {�, �}, with � < � and ¬� = � and
¬� = �. This is isomorphic to the powerset of a one-element set.

3. The finite and co-finite subsets of X form a subalgebra of ℘X.
4. Let X be a topological space. Then the set of clopen subsets of X is a subalgebra

of ℘X.

A homomorphism of Boolean algebras is, as usual, a structure-preserving function.

Definition 4.1.3. Suppose B and B
′ are Boolean algebras. Then a function φ : B→ B

′

is a homomorphism if and only if

1. φ(�) = � and φ(�) = �,
2. φ(¬a) = ¬φ(a),
3. φ(a ∧ b) = φ(a) ∧ φ(b),
4. φ(a ∨ b) = φ(a) ∨ φ(b),
5. if a ≤ b, then φ(a) ≤ φ(b).
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Exercise 4.1.4. The clauses in the definitions above are not independent of each other.
Which can safely be dropped?

Theorem 4.1.5. Let B be a Boolean algebra. The following hold, for all a, b, c ∈ B:
1. a ≤ b if and only if a ∨ b = b if and only if a ∧ b = a,
2. b = ¬a if and only if b ∧ a = � and b ∨ a = �,
3. a ≤ b if and only if ¬a ∨ b = � if and only if a ∧ ¬b = �,
4. ¬(a ∨ b) = (¬a) ∧ (¬b),
5. ¬(a ∧ b) = (¬a) ∨ (¬b),

Proof: Exercise. �

4.2. Dual spaces of Boolean algebras

Definition 4.2.1. Let B be a Boolean algebra. A subset F of B is a filter if and only if

1. � ∈ F ,
2. � /∈ F ,
3. if a, b ∈ F , then a ∧ b ∈ F ,
4. if a ∈ F and a ≤ b, then b ∈ F .

If in addition, for all a ∈ B, either a ∈ F or ¬a ∈ F , then F is an ultrafilter.

From here on, we refer to the thing defined in Definition 2.2.3. as a filter on ℘X .
The set of complements of elements of a filter is an ideal.

Proposition 4.2.2. A subset U of a Boolean algebra B is an ultrafilter if and only if it
is a maximal filter.

Proof: Exercise. �

Theorem 4.2.3. Any filter on a Boolean algebra can be extended to an ultrafilter.

Proof: Exercise. �

This is the Boolean Prime Ideal Theorem, which is a weakening of the Axiom of
Choice.

Definition 4.2.4. Let B be a Boolean algebra. We define SB to be the set of ultrafilters
on B, equipped with the topology generated by a basis of clopen sets of the form

[a] = {p ∈ SB : a ∈ p}.

Definition 4.2.5. A Stone space is a compact Hausdorff space with a basis of clopen
sets.

Proposition 4.2.6. For any Boolean Algebra, SB is a Stone space.

Proof: Every ultrafilter belongs to [�], so our proposed basis covers SB. Also, the
clopen sets are closed under finite intersection. So they do form a basis for a topology.

Hausdorffness: if p 6= q, then there must be some element of B which is contained in
one but not the other. Suppose that a ∈ p \ q. Now q is an ultrafilter, so either a ∈ q or
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¬a ∈ q. Hence ¬a ∈ q. Now p ∈ [a] and q ∈ [¬a]. These two sets are disjoint, because if
r ∈ [a] ∩ [¬a], then a, ¬a ∈ r, and then since r is a filter, a ¬ a = � ∈ r, contradicting the
statement that r is a filter.

As for compactness, it is sufficient to prove that any cover by basic open sets has a
finite subcover. [Exercise: why?]

Suppose that A ⊆ B, and that {[a] : a ∈ A} is an open cover of SB with no finite
subcover. Note that in this case SB, and therefore B itself, is infinite.

Let F be the set of elements c of B such that there exists a finite subset B of A such
that c ∨

∨

B = �.
Then, firstly, � itself belongs to F . However � does not, because otherwise if we have

a finite subset B of A such that
∨

B = �, then {[a] : a ∈ B} is a finite subcover because
if B = {ai : i < n}, if p /∈ [a0], then a0 /∈ p, so ¬a0 ∈ p. Similarly for all the other ai. If p
is not covered, then all the ¬ai ∈ p. Hence

∧

¬ai ∈ p. But
∨

ai = �. Hence
∧

¬ai = �,
contradicting the assumption that p is a filter.

Now if a, b ∈ F , then let B and C be subsets of A such that a ∨
∨

B = � and
b ∨

∨

C = �. Then ¬a ≤
∨

B and ¬b ≤
∨

C. Hence ¬a ∨ ¬b ≤
∨

(B ∪ C). Hence
a ∧ b ∨

∨

(B ∪ C) = �.
Clearly if a ∈ F and a ≤ b then b ∈ F .
So F is a filter.
Extend F to an ultrafilter p.
Suppose that a is an element of A such that p ∈ [a], or equivalently, a ∈ p.
Then ¬a belongs to F and hence to p, because if B = {a}, then ¬a∨

∨

B = ¬a∨a = �.
So no such a can exist, and this contradicts the statement that U is a cover.
Zero-dimensionality is simply the statement that there is a basis of clopen sets. �

4.3. Dual algebras of topological spaces
Now define the reverse.

Definition 4.3.1. If X is a compact Hausdorff zero-dimensional space, define BX to
be its Boolean algebra of clopen subsets.

4.4. Duality
B and S are mutually inverse, in that there are natural isomorphisms between BSB

and B, and between SBX and X .

Definition 4.4.1. If X is a compact zero-dimensional Hausdorff space, define ηX : X →
SBX so that

ηX(x) = {U : U ∈ BX, x ∈ U}.

Proposition 4.4.2. ηX is well-defined, and is a homeomorphism.

Proof: It is easy to check that ηX (x) is an ultrafilter on BX .
ηX is one-to-one because X is Hausdorff.
To see that ηX is onto, let p be any ultrafilter on BX .
Let F be p, considered as a subset of ℘X , and, noting that F is a filter on ℘X , extend

F to an ultrafilter U on ℘X .
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Because X is compact, U converges to some point x; thus the neighbourhood filter at
x is a subset of U.

Therefore U contains the family ηX(x), considered as a subset of ℘X , and because
ηX(x) ⊆ BX and p = U ∩BX , ηX(x) ⊆ p. Since ηX(x) is an ultrafilter, ηX(x) = p, as
required.

As for continuity, let [U ] be a basic open set inSBX . Then ηX(x) ∈ [U ] iff U ∈ ηX (x)
iff x ∈ U , so ηX

−1([U ]) = U .
Now ηX is a continuous bijection from a compact space (namely X) to a Hausdorff

space (namely SBX), so it is a homeomorphism. �

Definition 4.4.3. Suppose B is a Boolean algebra. Define ηB : B→ BSB by:

ηB(a) = [a].

Proposition 4.4.4. ηB is well-defined, and is an isomorphism.

Proof: Exercise. �

It follows trivially that every Boolean algebra is isomorphic to a subalgebra of a
powerset.

4.5. Duals of Boolean algebra homomorphisms

Definition 4.5.1. If φ : A → B is a homomorphism of Boolean algebras, then define
Sφ : SB→ SA by

Sφ(p) = {a ∈ A : φ(a) ∈ p}.

Note the reversal of the arrow.

Theorem 4.5.2. Sφ is well-defined and continuous.

Proof: We show that Sφ(p) is an ultrafilter on A. This follows easily from the fact that
φ is a homomorphism.

In detail:
φ(�) = �, since φ is a homomorphism; since p is a filter, � ∈ p in B, so � ∈ Sφ(p).
Suppose that � ∈ Sφ(p). Then φ(�) = � ∈ p, which is impossible. So � /∈ Sφ(p).
Suppose that a, b ∈ Sφ(p). Then φ(a), φ(b) ∈ p. Since p is a filter, φ(a) ∧ φ(b) ∈ p;

that is, φ(a ∧ b) ∈ p. Hence a ∧ b ∈ p, as required.
Suppose a ∈ Sφ(p) and a ≤ b. Then φ(a) ∈ p, and φ(a) ≤ φ(b). Hence since p is a

filter, φ(b) ∈ p. Hence b ∈ Sφ(p).
Suppose that a ∈ A. Then φ(a) ∈ B. Since p is an ultrafilter, one of φ(a) and

¬φ(a) = φ(¬a) is in p. Hence one of a or ¬a belongs to Sφ(p).
Now we show that Sφ is continuous. Suppose that [a] is a basic open set in A, so

that a ∈ A. Now Sφ(p) ∈ [a] if and only if a ∈ Sφ(p) if and only if φ(a) ∈ p, if and only
if p ∈ [φ(a)]. So (Sφ)−1

(

[a]
)

= [φ(a)], which is open, as required. �

Theorem 4.5.3. Sid = id, and S(ψ ◦ φ) = Sφ ◦Sψ.

Proof: That Sid = id is obvious.
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Suppose φ : A → B and ψ : B → C are Boolean algebra homomorphisms. Suppose
that p ∈ BC.

Then a ∈ (Sφ)((Sψ)(p)) if and only if φ(a) ∈ Sψ(p) if and only if ψ(φ(a)) ∈ p if and
only if (ψ ◦ φ)(a) ∈ p if and only if a ∈ S(ψ ◦ φ)(p).

So S(ψ ◦ φ) = Sφ ◦Sψ as required. �

Proposition 4.5.4. Sφ is one-to-one iff φ is onto and onto iff φ is one-to-one.

Proof: Exercise. �

4.6. Duals of continuous functions

Definition 4.6.1. If X and Y are two such, and f : X → Y is continuous, define
Bf : BY → BX so that Bf(U) = f−1[U ].

Proposition 4.6.2. Bf is a Boolean algebra homomorphism.

Proof: Elementary. �

Theorem 4.6.3. Bid = id, and B(f ◦ g) = Bg ◦Bf .

Proof: Elementary. �

4.7. Duality of functions

Theorem 4.7.1. If X, Y are compact Hausdorff zero-dimensional spaces, and f : X → Y
is continuous, then the following diagram commutes:

X
f
−→ Y

ηX


y



yηY

SBX −→
SBf

SBY

Proof: Suppose that x ∈ X .
Then U ∈ (SBf)(ηX(x)) iff (Bf)(U) ∈ ηX(x) iff x ∈ (Bf)(U) iff x ∈ f−1(U) iff

f(x) ∈ U .
So (SBf)(ηX(x)) = {U : f(x) ∈ U} = ηY (f(x)), as required. �

Theorem 4.7.2. If A,B are compact Hausdorff zero-dimensional spaces, and φ : A→ B

is continuous, then the following diagram commutes:

A
φ
−→ B

ηA


y



yηB

BSA −→
BSf

BSB

Proof: Suppose that a ∈ A.
Then (BSφ)(ηA)(a) is a clopen set in SB. We try to identify which one.
q ∈ (BSφ)(ηA)(a) if and only if (Sφ)(q) ∈ ηA(a) if and only if a ∈ (Sφ)(q) if and

only if φ(a) ∈ q if and only if q ∈ ηB(φ(a)).
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So (BSφ)(ηA)(a) = ηB(φ(a)), as required. �

If, as mathematicians, we are less interested in what objects are than in their be-
haviour, then the operators SB and BS are very close to being identity operators; so
close that we tend to describe B and S as being mutually inverse.
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