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SOLUTIONS

Correlation and concentration:

1. One can build quite small examples of this. Think of B1 ∪ B2 as E11 ∪ E10 ∪ E01 where

E11 = B1 ∩B2, E10 = B1 ∩Bc
2 and E01 = Bc

1 ∩B2. Then we want A to be likely on E11 ∪E10

and on E11 ∪ E01 but unlikely on E11 ∪ E01 ∪ E10, so we make A very likely on E11 and

unlikely on E01 and E10.

So e.g., a 4-element probability space {x, y, z, w} with B1 = {x ∪ y}, B2 = {x ∪ z} and

A = {x ∪ w}, with the probability measure being, say, px = py = pz = 0.3, pw = 0.1.

2. (i) The intersection of two or more up-sets is an up-set: if A ∈
⋂

i Ui and A ⊆ B ⊆ Ω, then

for each i we have A ∈ Ui and hence B ∈ Ui, so B ∈
⋂

i Ui. So by Harris’s Lemma we

have

Pp(U1 ∩ · · · ∩ Uk) > Pp(U1 ∩ · · · ∩ Uk−1)Pp(Uk),

giving the result by induction.

(ii) Dc is an up-set, so Pp(U1 | D
c) > Pp(U1) by Harris’s Lemma. Hence

Pp(U1 ∩ D) = Pp(U1)− Pp(U1 ∩ Dc) 6 Pp(U1)− Pp(U1)Pp(D
c) = Pp(U1)Pp(D),

giving the result.

(iii) We have

Pp(U1 ∩ U2 ∩D) = Pp(U1 ∩ U2)− Pp(U1 ∩ U2 ∩Dc) = Pp(U1)Pp(U2)− Pp(U1 ∩ U2 ∩Dc)

6 Pp(U1)Pp(U2)− Pp(U1)Pp(U2 ∩ Dc)

using independence and Harris’s Lemma. The last formula is just Pp(U1)Pp(U2 ∩ D), so

dividing through by Pp(U2 ∩ D) gives the result.

(iv) Without independence it need not always hold. There are examples even with |X| = 2:

taking p = 1/2, so our probability space consists of all four subsets of {1, 2} with all four

equally likely, let U1 = {{1}, {1, 2}} be the event ‘1 ∈ X’, let U2 = {{1}, {2}, {1, 2}} be

the event ‘1 ∈ X or 2 ∈ X’, and let D = {∅, {1}} be the event ‘2 /∈ X’.

3. The nice solution is to construct a coupling. Let p1 < p2 be probabilities, and construct

random sets Y and Z as follows: for each element of the ground-set X, include it into

both Y and Z with probability p1, into just Z with probability p2− p1, and into neither with

probability 1−p2. Make this choice independently for each i ∈ X. Then Y has the distribution

of the random subset Xp1 , and Z that of Xp2 . So f(p1) = P(Y ∈ U) and f(p2) = P(Z ∈ U).

But Y ⊆ Z always holds, so whenever Y ∈ U then Z ∈ U . So f(p2) > f(p1).

f(p) =
∑

A∈U p|A|(1− p)n−|A| is a polynomial, so it is infinitely differentiable.

4. We assume 0 < p < 1 to make this non-trivial. Looking at the proof in lectures, if equality

holds then in the notation of that proof we must have a0 = a1 or b0 = b1. This in turn means

A0 = A1 or B0 = B1. I.e., one of the up-sets A or B does not depend on coordinate n. (Mean-

ing whether or not Xp ∈ A, for example, depends only on which elements of {1, 2, . . . , n− 1}

are in Xp, not whether n is.)



But the same applies replacing n by any other coordinate. So we find that there are disjoint

sets S, T ⊂ [n] of coordinates such that A only depends on coordinates in S, and B only

depends on coordinates in T . The existence of such sets characterizes independence for up-

sets, since A and B are clearly independent in this case.

5. We apply Janson’s inequality to X, the number of triangles in G(n, p). Let Ai be the event

that the ith possible triangle is present, for 1 6 i 6 N =
(

n
3

)

. Clearly P(Ai) = p3, so

µ = Np3 = Θ(n3) (since p > 0 is constant).

For ∆, note that i ∼ j if and only if the corresponding triangles share at least one edge, which

happens only when they have exactly two common vertices. There are Θ(n4) such pairs of

triangles, so ∆ = O(n4p5) = O(n4). Hence both µ and µ2/∆ are at least constants times n2

(the µ2/∆ term dominates), and by the extended Janson inequality (Corollary 6.5) we have

P(X = 0) 6 exp(−cn2) for some constant c > 0.

For the next part, on might try arguing as follows: P(X = 0) = P(∩Ac
i ) >

∏

i P(A
c
i ) by

Harris’s Lemma (and induction), which applies to two down-sets just as well as to two up-

sets (argue as in Q2(ii), twice). This is just (1− p3)N = exp(−Θ(n3)). This is a valid lower

bound, but it turns out not a good one: the probability that there are no triangles is at least

the probability that G(n, p) contains no edges at all, namely (1− p)(
n

2
) = exp(−Θ(n2)). (All

non-zero probabilities in G(n, p) are at least exp(−Θ(n2)).)

Turning to triangle-free subsets: let k = ⌈A logn⌉. We want to show that whp there is no

triangle-free subset of size k (then there is no larger one, of course). By the first part, the

probability that a given set V of size k is triangle-free is at most e−ck2 . There are
(

n
k

)

6 nk

subsets to consider, so by the union bound the probability that one or more is triangle-free

is at most nke−ck2 = exp
(

k(log n− ck)
)

. This tends to 0 if we choose A larger than 1/c.

The answer to the last part is (should be!) yes: a first moment argument would say that for

A smaller than 1/c′, the expected number of such sets is large (which does not prove that

whp there is one). In fact, we know the answer, since by the results of the last section of the

course, whp there is an independent set of size at least B logn for some B. An independent

set is of course triangle-free.

6. With X the number of copies of H in G(n, p), from the lecture notes we have that µ = E[X] =

Θ(nvpe) where v = |H| and e = e(H). (Actually, we have an exact formula, but this is not

needed.) Thus µ = Θ(nv−αe) = Θ(nc) where c > 0 by the given condition on α.

Turning to ∆, this is exactly the same quantity as calculated in the proof of Theorem 2.5.

Arguing exactly as there, ∆ = ∆(n) is a finite sum (a sum where the number of terms does

not vary with n) of terms each of which is Θ(µ2/(nrps)) for some (different for each term)

values r, s satisfying s/r 6 e/v. (This is because r and s are possible numbers of vertices

and edges in a subgraph of H, arising as an intersection of two copies of H.) Consider one

such term. We have s < re/v, so nrps = nr−αs = nc′ where c′ = r − αs > r − αre/v > 0 by

the condition on α. So ∆ = ∆(n) =
∑k

i=1∆i(n) where ∆i(n) = Θ(µ2/nc′
i) with different ci

for each term. It follows that ∆ = O(µ2/nc′) for some c′ > 0 (the smallest of the c′i).

Now we apply Janson’s inequality in the form of Corollary 6.5. The key quantity min{µ/2, µ2/(2∆)}

is at least Θ(nx) for some x = min{c, c′} > 0 so (taking any 0 < β < x) it is at least nβ for n

sufficiently large. Hence P(X = 0) 6 exp(−nβ) for n sufficiently large.

[The key point is to show that the key quantity is of order a positive power of n; converting

to at least a power of n for n large is just a small extra step.]



Extra questions:

7. Connectedness of G(n, p) (i) Y2 is the number of components of G(n, p) consisting of a single

edge. For a given edge e = xy, it is a component if and only if (a) e is present in G(n, p),

and (b) none of the 2(n− 2) other possible edges between {x, y} and the remaining vertices

are present in G(n, p). If Ae is the event that e is such a component, we have that Y2 is the

number of events Ae that hold, so

E[Y2] =
∑

e

P(Ae) =

(

n

2

)

p(1− p)2(n−2) ∼
n2

2
p(1− p)2n.

Using 1− p 6 e−p this gives

E[Y2] 6 n2pe−2np = n(log n+ c)e−2 logn−2c =
(log n+ c)

n
e−2c → 0

as n → ∞.

(ii) Fix a set V of r vertices, say {1, 2, . . . , r}. Let π = P(E) be the probability of the event E

that these specific r vertices form a component of G(n, p). Then by linearity of expectation

(and symmetry), we have E[Yr] =
(

n
r

)

π.

Now E holds exactly when (a) the subgraph of G(n, p) induced by V is connected, and so

contains a spanning tree, and (b) there are no edges from V to [n] \ V . For (a), there are

rr−2 possible trees on V , each of which is included in G(n, p) with probability pr−1. So by

the union bound the probability πa of (a) is at most rr−2pr−1. (This is only an upper bound,

since we might have a component which is not a tree, and so has several spanning trees inside

it.) The probability πb of (b) is (1 − p)r(n−r). The events involve disjoint sets of edges, so

π = πaπb 6 rr−2pr−1(1− p)r(n−r), giving the claimed bound.

Following the plan in the hint, from the bound we have just calculated we have

EYr 6
(en

r

)r
rr−2pr−1e−pr(n−r)

for every n and r, which we can write as

EYr 6 r−2p−1xrn,r

where

xn,r =
en

r
rpe−p(n−r) = enpe−p(n−r).

We only consider terms where r 6 n/2, so n− r > n/2 and then

xn,r 6 xn = enpe−np/2.

From the bounds on np in the hint, for n large we have

xn 6 2e(log n)e−3 log n/8 = 2e(log n)n−3/8 = o(n−1/3).

Now

E

⌊n/2⌋
∑

r=3

Yr =

⌊n/2⌋
∑

r=3

EYr 6

⌊n/2⌋
∑

r=3

r−2p−1xrn 6

⌊n/2⌋
∑

r=3

nxrn,

again using a bound in the hint. Finally, this is at most

n
∞
∑

r=3

xrn =
nx3n

1− xn
= O(nx3n),



since xn → 0 (just xn 6 0.999 for large n is enough for this). Since xn = o(n−1/3) the final

bound is o(1).

(iii) Suppose it is not the case that all non-isolated vertices are in a single component. Then

there are two components with at least two vertices. Considering the smaller one, there is a

component with between 2 and n/2 vertices. The probability of this is (by Markov) at most

the expected number of such components, i.e., E
∑⌊n/2⌋

r=2 Yr, which by (i) and (ii) is o(1).

(iv) Let f(n) tend to infinity sufficiently slowly that the result in part (iii) holds with p =

(log n± f(n))/n. (The question allows us to assume such an f(n) exists.) Taking p = p+ =

(log n + f(n))/n, by Sheet 2 Q3, whp G(n, p) has no isolated vertices, so by part (iii) whp

G(n, p) is connected. Taking p = p− = (log n − f(n))/n, by Sheet 2 Q3, whp G(n, p) has

at least one isolated vertex, so (trivially) whp G(n, p) is not connected. This establishes the

threshold result.

More specifically, let p∗ = p∗(n) = (log n)/n. Suppose that p = p(n) satisfies p/p∗ → ∞.

Then p > p+ for n sufficiently large, so

P(G(n, p) is connected) > P(G(n, p+) is connected) → 1.

Suppose that p = p(n) satisfies p = o(p∗). Then p 6 p− for n sufficiently large, so

P(G(n, p) is connected) 6 P(G(n, p−) is connected) → 0.

8. Buffon’s needle. Not really expecting something extremely formal here!

For the first part, we have a straight needle of length ℓ < 1. It can’t cross more than one line

(or the same line twice) so the number N of crossings is either 0 or 1, and e(ℓ) = 0P(N =

0) + 1P(N = 1) = P(N = 1) = p(ℓ).

For the next part, one solution is to consider a needle of length ℓ1 + ℓ2 as made up of

two needles of lengths ℓ1 and ℓ2 stuck together. If we drop the whole needle randomly,

each part considered on its own falls randomly (but not independently, of the other one, of

course). Writing Ni for the number of lines the ith part crosses, we have N = N1 + N2 so

by linearity of expectation (which does not need independence) E[N ] = E[N1] + E[N2], i.e.,

e(ℓ1 + ℓ2) = e(ℓ1) + e(ℓ2). It follows by first year maths (using continuity) that e(ℓ) = cℓ for

some constant c. (This part does not require ℓ < 1.)

Finally: for a given length, the expectation does not depend on the shape if we allow curved

needles! To see this, suppose we have a curved needle of some length ℓ. We’ll assume the

curve is reasonably smooth. Then our needle can be well approximated by a sequence of n

straight line segments each of length ℓ/n. More precisely, we can find such an approximation

for each n with the shape converging to that of our needle, and hence the expected number

of crossings converging.

Consider such a piecewise linear needle. As above we have E[N ] =
∑n

i=1 E[Ni] where Ni is

the number of lines the ith segment crosses. From above, E[Ni] = p(ℓ/n) = e(ℓ/n) = cℓ/n if

n > ℓ, so E[N ] = cℓ for such a piecewise linear needle, not just for straight ones.

Thus, for two curved needles of length ℓ, we can find arbitrarily close linear approximations

having the same expected number of crossings, so the expected number of crossings for the

two needles is exactly equal.

What’s an easy shape? A circle of radius 1/2, so diameter 1. This always has exactly two

crossings, so the expectation is 2 and e(π) = 2. Thus c = 2/π.



Bonus question

9. It’s easiest to separate out the effect of the different coordinates, considering f(p) = P(Xp ∈

U) where p = (p1, . . . , pn), and Xp is the random subset of our ground-set X = {1, 2, . . . , n}

obtained by including each element i with probability pi, independently for the different i.

A compact way to write this is to use the notation of the proof of Harris’s Lemma. In that

notation we have (as in that proof)

f(p) = (1− pn)Pp′(U0) + pnPp′(U1)

where p′ = (p1, . . . , pn−1). The only dependence on pn on the right is the obvious one, so

∂

∂pn
f(p) = −Pp′(U0) + Pp′(U1) = Pp′(U1 \ U0),

since U0 ⊆ U1. Evaluating this partial derivative at the point p = (p, p, . . . , p) we obtain

Pp(U1 \ U0) = Ip(n,U).

To see the last equality, let X ′
p = Xp \ {n} = (X \ {n})p. As U is an up-set, we can’t have

Xp \ {n} ∈ U and Xp ∪ {n} /∈ U , so exactly one of Xp \ {n} and Xp ∪ {n} is in U if and only

if Xp \ {n} /∈ U and Xp ∪ {n} ∈ U . Whether this holds doesn’t depend on whether n ∈ Xp.

The condition is exactly that X ′
p /∈ U0 and X ′

p ∈ U1, i.e., X
′
p ∈ U1 \ U0.

Now, using first year calculus for the first step,

d

dp
f(p) =

n
∑

i=1

∂

∂pn
f(p)

∣

∣

∣

∣

p=(p,p,...,p)

=
n
∑

i=1

Ip(i,U),

as required.

If you find an error please check the website, and if it has

not already been corrected, e-mail riordan@maths.ox.ac.uk


