Chernoff bounds:

1. If (V_1, V_2) is a fixed partition of the vertices of G(n, 1/2), what is the distribution of the number of edges of G(n, 1/2) joining V_1 to V_2 ?

Show that the probability that G(n, 1/2) contains a bipartite subgraph with at least $n^2/8 + n^{3/2}$ edges is o(1).

2. Let H = (V, E) be a hypergraph. Let χ be a two-colouring (red/blue) of its vertices.

The discrepancy of an edge $e \in E$ under the colouring χ is the absolute difference between the number of blue vertices in e and the number of red vertices in e. The discrepancy of H under χ , denoted disc (H, χ) , is the maximum over all edges e of the discrepancy of e under χ . Finally, the discrepancy of H, disc(H), is defined as min_{χ} disc (H, χ) .

[For example, if H is k-uniform, disc(H) < k if and only if H is 2-colourable.]

- (i) Show that if H is k-uniform and has $m \ge 2$ edges, then $\operatorname{disc}(H) \le 2\sqrt{k \log m}$.
- (ii) Show that if H is k-uniform and each edge intersects at most d other edges, then $\operatorname{disc}(H) \leq \sqrt{2k \log(6(d+1))}$.

Branching processes:

3. Using results from lectures, show that the survival probability $\rho(c) = 1 - \eta(c)$ of the Poisson branching process $\mathbf{X}_{\text{Po}(c)}$ satisfies $\rho(1+\varepsilon) \sim 2\varepsilon$ as ε tends to zero from above.

Can you obtain further terms in this expansion?

- 4. Let X and Y be independent with $X \sim Po(c)$ and $Y \sim Po(d)$. Show that $X + Y \sim Po(c + d)$. Show that the conditional distribution of X, given that X + Y = n, is binomial with parameters n and c/(c + d). Deduce (or show otherwise) that if $Z \sim Po(a)$ and the conditional distribution of W given that Z = n is Bin(n, p), then $W \sim Po(ap)$, $Z W \sim Po(a(1 p))$ and W and Z W are independent.
- 5. Let $k \ge 1$ be fixed, and let Y_k denote the number of k-vertex components of G = G(n, p).
 - (i) Using Cayley's formula k^{k-2} for the number of trees on k (labelled) vertices, show directly that

$$\mathbb{E}Y_k \sim \binom{n}{k} k^{k-2} p^{k-1} e^{-ck}$$

when p = p(n) satisfies $np \to c$ with c > 0 constant.

(ii) Deduce that $\rho_k(c) = c^{k-1}k^{k-1}e^{-ck}/k!$. [You may like to give a direct proof of this formula.]

(iii) Deduce that

$$\sum_{k=1}^{\infty} c^{k-1} \frac{k^{k-1}}{k!} e^{-ck} = 1$$

if $0 \leq c \leq 1$, and that the sum is strictly less than 1 if c > 1. [You may not like to give a direct proof of this!]

- 6. (i) Show that for each $c \in (1, \infty)$ there is a unique $d \in (0, 1)$ such that $ce^{-c} = de^{-d}$.
 - (ii) Let η be the extinction probability of $\mathbf{X}_{\text{Po}(c)}$, the Galton–Watson branching process with offspring distribution Po(c). Show that $c\eta = d$ where d is related to c as in part (i).
 - (iii) Consider the first particle (the root) in the branching process $\mathbf{X}_{\text{Po}(c)}$. What is the probability of extinction of the process conditional on the event that the root has k children (for $k \in \{0, 1, 2, ...\}$)? Use this to find the conditional distribution of the number of children of the root, conditional on the event that the process dies out.
 - (iv) Hence or otherwise argue that the branching process $\mathbf{X}_{\text{Po}(c)}$, conditioned on extinction, has the same distribution as the branching process $\mathbf{X}_{\text{Po}(d)}$. What does this *suggest* about the random graphs G(n, d/n) and G(n, c/n)?

Bonus questions (compulsory for MFoCS students, optional for others):

7. (i) Let X_1, X_2, \ldots, X_n be independent random variables such that $0 \leq X_i \leq 1$ for all *i*. Let $S_n = \sum_{i=1}^n X_i$ and let $p = \sum \mathbb{E}X_i/n$, so that $\mathbb{E}S_n = np$. Show that

$$\mathbb{P}\left(S_n \geqslant xn\right) \leqslant e^{-uxn} \left(1 - p + pe^u\right)^n$$

for any u > 0, x > p, and deduce that the Chernoff bounds proved in lectures for the case $S_n \sim Bin(n, p)$ also apply in this more general case.

- (ii) Let a_1, \ldots, a_n be constants and let c > 0. Let Y_1, \ldots, Y_n be independent random variables such that $a_i \leq Y_i \leq a_i + c$, for all *i*. Give (with brief justification) a version of the Chernoff bound for $\mathbb{P}(S_n - \mathbb{E}S_n \geq t)$, where $S_n = \sum_{i=1}^n Y_i$.
- 8. Fix $k \ge 1$. Show that if p(n) is chosen so that the expected number of vertices of G(n, p) with degree strictly less than k tends to a constant c, then

$$\mathbb{P}(\delta(G(n,p)) \ge k) \to e^{-c},$$

where $\delta(G)$ denotes the minimum degree of a graph G.

Deduce that if $p = \frac{\log n + c}{n}$ where c is constant, then

 $\mathbb{P}(G(n,p) \text{ is connected}) \to e^{-e^{-c}}.$

If you find an error please check the website, and if it has not already been corrected, e-mail riordan@maths.ox.ac.uk