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Correlation and concentration:

1. Give an example of three events A, B1 and B2 such that P(A | Bi) > P(A) for i = 1, 2 but

P(A | B1 ∪B2) < P(A).

2. Let U1,U2, . . . be up-sets (increasing events) in P(X), let D be a down set, and let Pp

denote the probability measure associated to selecting each element of X independently with

probability p.

(i) Show that Pp(U1 ∩ · · · ∩ Uk) >
∏k

i=1 Pp(Ui).

(ii) Show that Pp(U1 | D) 6 Pp(U1).

(iii) Show that if U1 and U2 are independent, then Pp(U1 | U2 ∩ D) 6 Pp(U1 | U2).

(iv) Does the last inequality always hold, i.e., without assuming independence?

3. Let U ⊂ P(X) be an up-set. Show that the function f(p) defined by f(p) = Pp(U) is increasing

on [0, 1]. Is it continuous? Differentiable?

4. When does equality hold in Harris’s Lemma? [ Hint: you may wish to consider more than

one way of splitting P(X) into (n− 1)-dimensional sub-cubes. ]

5. Let 0 < p < 1 be fixed, and let X denote the number of triangles in G(n, p). Show that there

is a constant c = c(p) > 0 such that P(X = 0) 6 e−cn2

for all n > 3. Is P(X = 0) at least

e−c′n2

for some constant c′?

Let G = G(n, p), where 0 < p < 1 is constant. Call a subset V of V (G) triangle-free if the

subgraph of G induced by V contains no triangles. Show that there is a constant A such that

whp (i.e., with probability tending to 1) G contains no triangle-free subset with more than

A log n vertices.

Do you expect G(n, 1/2) to have a triangle-free subset of size at least B log n for some constant

B?

6. Let H be a fixed strictly balanced graph, let 0 < α < |H|/e(H) be fixed, let p = p(n) = n−α,

and let X denote the number of copies of H in G(n, p). Use Janson’s inequality to show that

there is some constant β > 0 such that P(X = 0) 6 exp(−nβ) for n sufficiently large.

[ Hint: evaluate µ = E[X] and ∆ approximately. Have we considered ∆ before in a different

context? ]

Extra questions:

7. Connectedness of G(n, p) Consider G(n, p) with p = logn+c
n for a constant c ∈ R, and let Yr

be the number of components with r vertices.

(i) Show that EY2 → 0 as n → ∞.

(ii) Using Cayley’s formula, show that

EYr 6

(

n

r

)

rr−2pr−1(1− p)r(n−r).



Hence show that

E

⌊n/2⌋
∑

r=3

Yr → 0 as n → ∞.

[ Try on your own first; there is a hint below. ]

(iii) Using (i) and (ii), show that as n → ∞ with c fixed

P(all non-isolated vertices are in a single component) → 1.

(iv) Assuming (or, if keen, proving) that the bound above remains valid if c is allowed to

vary with n, tending to +∞ or −∞ sufficiently slowly, deduce that p(n) = logn
n is a

threshold function for G(n, p) to be connected.

[ Hint for part (ii): using the standard bounds
(

n
r

)

6 (en/r)r and 1− p 6 e−p, show that the

sum of the expectations is at most
∑

r>3 r
−2p−1Xr for some expression X. Using n−r > n/2

and 3 log n/4 6 np 6 2 logn (for n large), show that X = o(n−1/3). Use r−2p−1 6 p−1 6 n

to complete the calculation. For part (iv): recall the result of Sheet 2 Q3. ]

8. Buffon’s needle. Suppose a floor is made up of parallel strips of wood, each of width 1. A

needle of length l < 1 is dropped onto the floor. What is the probability p(l) that it crosses

the boundary between two strips? (If the picture is not clear, Google for “Buffon’s needle”!).

The answer leads to an experimental method for estimating π.

The traditional solution is to average over the position of the end of the needle and over the

angle at which the needle lies, using a double integral. This is reasonably straightforward, but

an alternative approach to the calculation is to use the principle of linearity of expectation

(which underlies everything we did with the first moment method).

Instead of p(l), consider e(l), the expected number of times that the needle crosses a line.

• Show that if l < 1 then p(l) = e(l).

• Show that e(l) = cl for some constant c (for all positive l).

If we replace a straight needle by some other shape with the same length, the probability of

crossing a line will change; however, note that the expectation of the number of line-crossings

doesn’t! – so to calculate e(l) we may consider “needles” which are not straight lines.

• Find a “needle” for which the expectation is very easy to calculate. Hence find c.

Bonus question (compulsory for MFoCS students, optional for others):

9. Let U ⊂ P(X) be an up-set. The influence Ip(i,U) of an element i ∈ X on U is the probability

that exactly one of Xp \ {i} and Xp ∪ {i} is in U . Defining f(p) as in Question 3, show that
d
dpf(p) =

∑

i∈X Ip(i,U).

If you find an error please check the website, and if it has

not already been corrected, e-mail riordan@maths.ox.ac.uk


