
C8.2: Stochastic analysis and PDEs

Solutions to Problem sheet 4

The questions on this sheet are divided into two sections. Those in the first section are compulsory and
should be handed in for marking. Those in the second are extra practice questions and should not be
handed in.

Section 1 (Compulsory)

1. Let r satisfy the stochastic differential equation

drt = −βrtdt+ σ
√
rtdWt,

where {Wt}t≥0 is standard P-Brownian motion and β, σ, r0 > 0.

Suppose that {u(t)}t≥0 satisfies the ordinary differential equation

du

dt
(t) = −βu(t)− σ2

2
u(t)2, u(0) = θ,

for some constant θ > 0. Fix T > 0. For 0 ≤ t ≤ T find the stochastic differential equation
satisfied by

exp (−u(T − t)rt) .
Hence find the moment generating function for rT . Calculate the mean and variance of rT and
P[rT = 0].

It is not hard to check that 0 is an exit boundary for r. Thus rt ≥ 0 for all t ≥ 0.

Apply Ito’s formula to Mt = exp (−u(T − t)rt). Using the fact that u satisfies the ODE we have
that M is a local martingale. As the solution to the ODE is bounded (direct computation) and
r is positive we have M ≤ 1. Thus M is a bounded local martingale and hence a martingale.
Taking expectations we have

E [exp(−u(0)rT )] = exp(−u(T )r0).

Solving the ODE for u(T ) then gives the moment generating function for rT . As u(0) = θ, we
have

u(T ) =
θe−βT

1 + γθ − γθe−βT
,

where γ = σ2/2β. Then

ψt(θ) = E [exp(−u(0)rT )] = exp(− r0θe
−βT

1 + γθ − γθe−βT
.

By differentiating the MGF ψt(θ) we have E[rT ] = r0e
−βT , var(rT ) = r0σ

2(1 − e−βT )/β. By

letting θ →∞ we have P[rT = 0] = exp

(
−r0 2βe−βT

σ2(1−e−βT )

)
.
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2. Use the Feynman-Kac stochastic representation formula to solve

∂F

∂t
(t, x) +

1

2
σ2
∂2F

∂x2
(t, x) = 0,

subject to the terminal value condition

F (T, x) = x4.

The Feynman-Kac representation gives F (t, x) = E
[
X4
T

∣∣Xt = x
]
, where Xt = σWt. Thus using

properties of the normal distribution we can calculate the expectations to get F (t, x) = 3σ4(T −
t)2 + 6σ2(T − t)x2 + x4.

3. We can use the Feynman-Kac representation to find the partial differential equation solved by the
transition densities of solutions to stochastic differential equations.

Suppose that
dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. (1)

For any set B let

pB(t, x;T ) , P [XT ∈ B|Xt = x] = E [1B(XT )|Xt = x] .

Use the Feynman-Kac representation (assuming integrability conditions are satisfied) to write
down an equation for

∂pB
∂t

(t, x;T )

Deduce that the transition density of the solution {Xs}s≥0 to the stochastic differential equa-
tion (1) solves

∂p

∂t
(t, x;T, y) +Ap(t, x;T, y) = 0 (2)

p(t, x;T, y) → δy(x) as t→ T.

Equation (2) is known as the Kolmogorov backward equation (it operates on the ‘backward in
time’ variables (t, x)).

By the Feynman-Kac representation (subject to the integrability condition)

∂pB
∂t

(t, x;T ) +ApB(t, x;T ) = 0 (3)

pB(T, x;T ) = 1B(x),

where

Af(t, x) = µ(t, x)
∂f

∂x
(t, x) +

1

2
σ2(t, x)

∂2f

∂x2
(t, x).

Writing |B| for the Lebesgue measure of the set B, the transition density of the process {Xs}s≥0
is given by

p(t, x;T, y) , lim
B→y

1

|B|
P [XT ∈ B|Xt = x] .

(We are assuming existence of the density). Since the equation (3) is linear, we have proved that
the transition density of the solution {Xs}s≥0 to the stochastic differential equation (1) solves (2)
as required.
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We can also obtain an equation acting on the forward variables (T, y). In the above notation,

∂p

∂T
(t, x;T, y) = A∗p(t, x;T, y) (4)

where

A∗f(T, y) = − ∂

∂y
(µ(T, y)f(T, y)) +

1

2

∂2

∂y2
(
σ2(t, Y )f(T, y)

)
.

Heuristic explanation: By the Markov property of the process {Xt}t≥0, for any T > r > t

p(t, x;T, y) =

∫
p(t, x; r, z)p(r, z;T, y)dz.

Differentiating with respect to r and using (2),∫ ∞
−∞

{
∂

∂r
p(t, x; r, z)p(r, z;T, y)− p(t, x; r, z)Ap(r, z;T, y)

}
dz = 0.

Now integrate the second term by parts to obtain∫ ∞
−∞

{
∂

∂r
p(t, x; r, z)−A∗p(t, x; r, z)

}
p(r, z;T, y)dz = 0.

This holds for all T > r, which, if p(r, z;T, y) provides a sufficiently rich class of functions as we
vary T , implies the result.

Equation (4) is the Kolmogorov forward equation of the process {Xs}s≥0.

4. Suppose that {Xt}t≥0 solves

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

where {Wt}t≥0 is a P-Brownian motion. For k : R+×R→ R and Φ : R→ R given deterministic
functions, find the partial differential equation satisfied by the function

F (t, x) , E
[

exp

(
−
∫ T

t
k(s,Xs)ds

)
Φ(XT )

∣∣∣∣Xt = x

]
,

for 0 ≤ t ≤ T .

Evidently F (T, x) = Φ(x). By analogy with the proof of the Feynman-Kac representation, it is
tempting to examine the dynamics of

Zs = exp

(
−
∫ s

t
k(u,Xu)du

)
F (s,Xs).

Notice that if this choice of {Zs}t≤s≤T is a martingale we have that

Zt = F (t, x) = E [ZT |Xt = x] .

Thus the partial differential equation satisfied by F (t, x) is that for which {Zt}0≤t≤T is a mar-
tingale.

Our strategy now is to find the stochastic differential equation satisfied by {Zs}t≤s≤T . We proceed
in two stages. Remember that t is now fixed and we vary s. First notice that

d

(
exp

(
−
∫ s

t
k(u,Xu)du

))
= −k(s,Xs) exp

(
−
∫ s

t
k(u,Xu)du

)
ds
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and by Itô’s formula

dF (s,Xs) =
∂F

∂s
(s,Xs)ds+

∂F

∂x
(s,Xs)dXs +

1

2

∂2F

∂x2
(s,Xs)σ

2(s,Xs)ds

=

{
∂F

∂s
(s,Xs) + µ(s,Xs)

∂F

∂x
(s,Xs) +

1

2
σ2(s,Xs)

∂2F

∂x2
(s,Xs)

}
ds

+ σ(s,Xs)
∂F

∂x
(s,Xs)dWs.

Now using our integration by parts formula we have that

dZs = exp

(
−
∫ s

t
k(u,Xu)du

)
×{{

−k(s,Xs)F (s,Xs) +
∂F

∂s
(s,Xs) + µ(s,Xs)

∂F

∂x
(s,Xs) +

1

2
σ2(s,XS)

∂2F

∂x2

}
ds

+ σ(s,Xs)
∂F

∂x
(s,Xs)dWs

}
.

We can now read off the solution: in order for {Zs}t≤s≤T to be a martingale, F must satisfy

∂F

∂s
(s, x) + µ(s, x)

∂F

∂x
(s, x) +

1

2
σ2(s, x)

∂2F

∂x2
(s, x)− k(s, x)F (s, x) = 0.

5. Suppose that for 0 ≤ s ≤ T ,

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs, Xt = x,

where {Ws}t≤s≤T is a P-Brownian motion, and let k,Φ : R→ R be given deterministic functions.
Find the partial differential equation satisfied by

F (t, x) = E [Φ(XT )|Xt = x] +

∫ T

t
E [k(Xs)|Xt = x] ds.

Using the same reasoning as question 4 we apply Itô’s formula to F (s,Xs) +
∫ s
t k(Xu)du and

integrate with respect to s over [t, T ] to see that

∂F

∂t
+ µ

∂F

∂x
+

1

2
σ2
∂2F

∂x2
+ k = 0,

and F (T, x) = Φ(x).

6. Let B be a Brownian motion in R and consider At =
∫ t
0 I{Bu>0}du, the amount of time that

Brownian motion spends in the positive half line up to time t. Let F (t, x) = E(exp(−θAt)|B0 = x),
the Laplace transform of At given that the Brownian motion starts from x. By setting r(t, Bt) =
−θI{Bt>0} (in the Feynman-Kac formula in the notes) and Ψ = 1 and using a time reversed
version of the Feynman-Kac formula, show the PDE satisfied by F , is

∂F

∂t
=

{
1
2
∂2F
∂x2
− θF x > 0, t > 0

1
2
∂2F
∂x2

x ≤ 0, t > 0.
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specifying the initial conditions and, carefully, the continuity conditions at 0. By taking Laplace
transforms, F̂ (λ, x) =

∫∞
0 exp(−λt)F (t, x)dt and solving the resulting ODE, show that

F̂ (λ, 0) =
1√

λ
√
λ+ θ

. (5)

From this we can derive Levy’s arcsine law,

P (At ≤ s|X0 = 0) =

∫ s

0

1

π
√
u(t− u)

du =
2

π
arcsin(

√
s

t
), 0 ≤ s ≤ t.

To see this compute the Laplace transform of the arcsine law by suitably integrating to show that
the transform is as given in (5).

Let

At =

∫ t

0
IBu>0du,

and

F (t, x) = E
[
e−θAt |B0 = x

]
= E

[
e−θ

∫ t
0 IBu>0du|B0 = x

]
.

Now suppose f satisfies the following PDE for some function r,

∂f

∂t
(t, x) +

1

2

∂2f

∂x2
(t, x) + r(x)f(t, x) = 0

with terminal condition
f(T, x) = Ψ(x).

Let t′ → T − t, so that we are now running backwards in time, then ∂f
∂t′ = −∂f

∂t . Hence

∂f

∂t
=

1

2

∂2f

∂x2
+ r(x)f(t, x)

and the terminal condition is now an initial condition

f(0, x) = Ψ(x).

The Feyman-Kac formula gives that

f(t, x) = E exp(−
∫ t

0
r(Bu)du)Ψ(Bt)|B0 = x).

Hence for our function F given by

F (t, x) = E
[
e−θ

∫ t
0 IBu>0duΨ(Bt)|B0 = x

]
the PDE is, for t > 0,

∂F

∂t
=

{
1
2
∂2F
∂x2
− θF, for x > 0

1
2
∂2F
∂x2

, for x < 0
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with F (0, x) = 1 and continuity at 0, in that F (t, 0+) = F (t, 0−) and ∂F
∂x (t, 0+) = ∂F

∂x (t, 0−).
Now consider the Laplace transform

F̂ (λ, x) =

∫ ∞
0

e−λtF (t, x)dt.

Then

λF̂ (λ, x)− F (0, x) =

{
1
2 F̂
′′(λ, x)− θF̂ for x > 0
1
2 F̂
′′(λ, x), for x ≤ 0

i.e. F̂ ′′(λ, x)− 2λF̂ (λ, x)− 2θF̂ + 2 = 0, x > 0

i.e. F̂ ′′(λ, x)− 2λF̂ (λ, x) + 2 = 0, x ≤ 0

For x ≤ 0,

F̂ = A1e
√
2λx +B1e

−
√
2λx +

1

λ
.

For x > 0,

F̂ = A2e
√

2(λ+θ)x +B2e
−
√

2(λ+θ)x +
1

λ+ θ
.

Finally we have

F (t, x)→
{
e−θt as x→∞
1, as x→ −∞

Also by continuity condition F (t, 0+) = F (t, 0−) and ∂F
∂x (t, 0+) = ∂F

∂x (t, 0−) we get

F̂ (λ, x)→
{

1
λ as x→ −∞
1

λ+θ , as x→∞

Hence
F̂ (λ, 0+) = F̂ (λ, 0−)

and
F̂ ′(λ, 0−) = F̂ ′(λ, 0+)

Therefore
x→ −∞ ⇒ B1 = 0,

x→∞ ⇒ A2 = 0 and

A1 +
1

λ
= B2 +

1

λ+ θ
⇒ A1 = B2 +

1

λ+ θ
− 1

λ
√

2λA1 = −
√

2(λ+ θ)B2.

Finally
√

2λ

(
B2 −

θ

λ(λ+ θ)

)
= −

√
2(λ+ θ)B2(√

λ+
√

(λ+ θ)
)
B2 =

θ√
λ(λ+ θ)

B2 =
θ√

λ(λ+ θ)(
√
λ+

√
(λ+ θ))
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F̂ (λ, 0) =
θ

√
λ(λ+ θ)

(√
λ+

√
(λ+ θ)

) +
1

λ+ θ

=
1

λ+ θ

[
θ + λ+

√
λ(λ+ θ)

λ+
√
λ(λ+ θ)

]

=
1

λ+ θ

[
θ(λ−

√
λ(λ+ θ)) + λ2 − (λ2 + λθ)

−λθ

]
=

1√
λ(λ+ θ)

,

as required.

To show that this is the Laplace transform for the arcsin law, consider the random variable Yt
with

P(Yt ∈ ds) =
ds

π
√
s(t− s)

, 0 < s < t

so Ee−θYt =

∫ t

0
e−θs

ds

π
√
s(t− s)

= F (t, 0)

F̂ (λ, 0) =

∫ ∞
0

∫ t

0
e−λt−θs

ds

π
√
s(t− s)

dsdt

=

∫ ∞
s=0

∫ ∞
s

e−λt−θs
ds

π
√
s(t− s)

dtds

(u = t− s) =

∫ ∞
0

∫ ∞
0

e−λu−(θ+λ)s
1

π
√
s
√
u
duds

=
1

π

∫ ∞
0

e−λu√
u
du

∫ ∞
0

e−(θ+λ)s√
s

ds

Using the substitution a =
√

2u, then u = a2

2 and du = ada, we have∫ ∞
0

e−λu√
πu
du =

1√
λ
.

In the same way we have ∫ ∞
0

e−(θ+λ)s√
πs

ds =
1√
θ + λ

,

and hence

F̂ (λ, 0) =
1√

λ
√
θ + λ

.

Thus as the Laplace transform of A is given by this expression we must have

P(At ∈ ds) =
ds

π
√
s
√
t− s

.

Section 2 (Extra practice questions, not for hand-in)
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A. Suppose we start a three dimensional Brownian motion at the origin. Fix a radius 0 < r < 1. In
which of the annuli

A[a] = {x ∈ R3 : a− r ≤ |x| ≤ a} for a ∈ [r, 1]

is the expected occupation time maximal?

We can do the calculation in polar coordinates, letting C denote c(d) times the surface of the
unit sphere in R3. Then

E0

{∫ T

0
1A[a](Bs) ds

}
= C

∫ r

a−r

(1

r
− 1
)
r2 dr

= C
(a2

2
− a3

3
− (a− r)2

2
+

(a− r)3

3

)
= C

(
r(a− a2) + r2(a− 1/2)− r3/3

)
.

We note that this is maximal if r(1 − 2a) + r2 = 0 i.e. exactly if a = (1 + r)/2, if the annulus
is in the middle. Note that the expected occupation time in the inner ball a = r and the outer
annulus a = 1 are the same.

B. Suppose that v(t, x) solves

∂v

∂t
(t, x) +

1

2
σ2x2

∂2v

∂x2
(t, x)− rv(t, x) = 0, 0 ≤ t ≤ T.

Show that for any constant θ,

vθ(t, x) ,
x

θ
v

(
t,
θ2

x

)
is another solution.

Probabilistically, the point is that for a geometric Brownian motion {Xt}0≤t≤T , dependence of
XT on Xt is only as a multiplier.

C. (The Ornstein-Uhlenbeck process). Let {Wt}t≥0 denote standard Brownian motion under P. The
Ornstein-Uhlenbeck process, {Xt}t≥0, is the unique solution to Langevin’s equation,

dXt = −αXtdt+ dWt, X0 = x.

This equation was originally introduced as a simple idealised model for the velocity of a particle
suspended in a liquid. In finance it is a special case of the Vasicek model of interest rates (see
Exercise D). Verify that

Xt = e−αtx+ e−αt
∫ t

0
eαsdWs,

and use this expression to calculate the mean and variance of Xt.

The verification is straightforward. Then E [Xt] = e−αtx, var(Xt) = e−2αt

2α

(
e2αt − 1

)
(where we

use the Itô isometry to evaluate the expected value of the square of the stochastic integral.

D. In the Vasicek model, the interest rate {rt}t≥0 is assumed to be a solution of the stochastic
differential equation

drt = (b− art)dt+ σdWt,

where, as usual, {Wt}t≥0 is standard P-Brownian motion.
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Find the Kolmogorov backward and forward differential equations satisfied by the probability den-
sity function of the process. What is the distribution of rt as t→∞?

∂p(t, T ;x, y)

∂t
= −1

2
σ2
∂2p

∂x2
− (b− ax)

∂p

∂x
.

∂p(t, T ;x, y)

∂T
=

1

2
σ2
∂2p

∂y2
− ∂

∂y
((b− ay)p) .

Consider ut = eatrt.
dut = beatdt+ σeatdWt.

Integrating and substituting back gives

rt = e−atr0 + e−at
∫ t

0
beasds+

∫ t

0
σe−a(t−s)dWs.

Thus rt is normally distributed with mean e−atr0 + b
a(1 − e−at) and variance σ2

2a (1 − e−2at). As
t→∞, rt tends to a normally distributed random variable with mean b/a and variance σ2/2a.

E. The process usually known as Geometric Brownian motion solves the s.d.e.

dSt = µStdt+ σStdWt.

Find the forward and backward Kolmogorov equations for geometric Brownian motion and show
that the transition density for the process is the lognormal density given by

p(t, x;T, y) =
1

σy
√

2π(T − t)
exp

(
−
(
log(y/x)−

(
µ− 1

2σ
2
)

(T − t)
)2

2σ2(T − t)

)
.

Substituting in our formula for the forward equation we obtain

∂p

∂T
(t, x;T, y) =

1

2

∂2

∂y2
(
y2p(t, x;T, y)

)
− µ ∂

∂y
(yp(t, x;T, y)) ,

and the backward equation is

∂p

∂t
(t, x;T, y) = −1

2
σ2x2

∂2p

∂x2
(t, x;T, y)− µx∂p

∂x
(t, x;T, y).

It is enough to check that the lognormal density solves one of the Kolmogorov equations.
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