
C8.2: Stochastic analysis and PDEs

Problem sheet 2

Ben Hambly

The questions on this sheet are divided into two sections. Those in the first section are compulsory and
should be handed in for marking. Those in the second are extra practice questions and should not be
handed in.

Section 1 (Compulsory)

1. Show that a Markov pregenerator has the property that for f ∈ D(A), λ ≥ 0 and f − λAf = g,
then ‖f‖ ≤ ‖g‖. Deduce that, in particular, g determines f uniquely.

2. Calculate the infinitesimal generator of the pure jump process Xt modelling the motion of a
particle which, if it is currently at location x, it will wait an exponentially distributed amount
of time with parameter α(x) before jumping to a new location determined by the probability
measure µ(x, dy). You may assume that α(x) is uniformly bounded.

3. Check that each of the following is a Markov generator:

(a) A = G− I where G is a positive operator defined on all of C(E) such that G1 = 1.

(b) E = [0, 1] and Af(η) = 1
2f
′′(η) with

D(A) = {f ∈ C(E) : f ′′ ∈ C(E), f ′(0) = 0 = f ′(1)}.

(c) E = [0, 1] and Af(η) = 1
2f
′′(η) with

D(A) = {f ∈ C(E) : f ′′ ∈ C(E), f ′′(0) = 0 = f ′′(1)}.

4. Let E = [0, 1] and consider the operator L defined by Lf(x) = f ′(0) with

D(L) = {f ∈ C([0, 1]) : f ′(0) exists}.

Show that the closure of the graph of L does not correspond to the graph of a linear operator.

5. (Discrete time martingale problem, Ethier & Kurtz, Chapter 4, Exercise 16)

(a) Let E be a compact (or locally compact) space and B(E) the bounded Borel measurable
functions on E. Let µ(x,Γ) be a transition function on E × B(E) and let {X(n)}n∈N be a
sequence of E-valued random variables. Define A : B(E)→ B(E) by

Af(x) =

∫
E
f(y)µ(x, dy)− f(x),
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and suppose that, for each f ∈ B(E),

f(X(n))−
n−1∑
k=0

Af(X(k))

is a martingale with respect to the natural filtration generated by X. Show that X is a
Markov chain with transition function µ(x,Γ).

(b) Let X(n), n = 0.1. . . . , be a sequence of Z-valued random variables such that for each n ≥ 0,
|X(n+ 1)−X(n)| = 1. Let g : Z→ [−1, 1] and suppose that

X(n)−
n−1∑
k=0

g(X(k))

is a martingale with respect to the natural filtration generated by X. Show that X is a
Markov chain and calculate its transition probabilities in terms of g.

6. The Wright-Fisher diffusion, which takes values in [0, 1] has generator

Af(x) =
1

2
x(1− x)f ′′(x),

when restricted to an appropriate subset of the twice continuously differentiable functions on
[0, 1]. By considering the martingale problem, that

f(Xt)−
∫ t

0
Af(Xs)ds,

will be a P-local martingale, with suitable functions f :

(a) Show that X∞ = limt→∞Xt exists and find its expectation;

(b) Show that P[X∞ ∈ {0, 1}] = 1 and (using your previous calculation) find P[X∞ = 1];

(c) Find E[
∫∞
0 Xs(1−Xs)ds].

Now take f(x) = 2x log x+ 2(1− x) log(1− x). Although f isn’t in the domain of the generator,
we can find a twice continuously differentiable function which equals f on [ε, 1− ε] and is in the
domain. Taking this on trust, find an expression for the expected hitting time of {ε, 1 − ε} and
hence of {0, 1}.

Section 2 (Extra practice questions, not for hand-in)

A. Show that if a Markov pregenerator is everywhere defined and is a bounded operator, then it is
automatically a Markov generator. [Hint: A bounded operator is automatically closed. To check
that R(I − λA) = C(E) for sufficiently small λ, it suffices to solve f − λAf = g, for which you
can try a ‘geometric series’ f =

∑∞
n=0 λ

nAng, just as we did on the previous problem sheet.]

B. (Brownian Motion with sticky boundary.) Show that Af = 1
2f
′′ on

D(A) = {f ∈ C([0,∞)) : f ′, f ′′ ∈ C([0,∞)), f ′(0) = cf ′′(0)}

for a fixed c > 0 defines a Markov pregenerator.
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The corresponding stochastic process is called sticky Brownian motion. It interpolates between
absorbing and reflecting Brownian motion on the half line. In particular, unlike reflecting Brow-
nian motion, the Lebesgue measure of {t : Xt = 0} is positive. Indeed one can check that

E0

[∫ ∞
0

αe−αt1Xt>0dt

]
=

1

1 + c
√

2α
. (1)

If you want to try to show this, use the fact that since the semigroups are known explicitly in
the absorbing and reflecting cases, in an obvious notation we can solve the equations

fa − λAafa = g, fr − λArfr = g

explicitly. Since the form of the generators is the same (only the domains differ), one can solve
f − λAf = g by taking f to be a constant multiple of f ′′r (0)fa(x) + cf ′a(0)fr(x). That provides
an expression for

E
[∫ ∞

0
αe−αtg(Xt)dt

]
.

C. Let X be a strong Markov process with Markov generator A on a compact set E. Let P λt f(x) =
Ex exp(−λt)f(Xt).

(a) Show by the strong Markov property that for a stopping time τ we have

P λτ P
λ
t = P λτ+t,

and hence that we have Dynkin’s formula for the resolvent Rλ =
∫∞
0 e−λtPtdt; for g ∈

C(E), λ > 0, x ∈ E that

Rλg(x) = Ex
∫ τ

0
e−λtg(Xt)dt+ P λτ Rλg(x).

(b) Apply this to g = (λ−A)f , for f ∈ D(A), to obtain

Exe−λτf(Xτ )− f(x) = Ex
∫ τ

0
e−λs(A− λ)f(Xs)ds. (2)

Now let λ→ 0 to obtain for x such that Exτ <∞,

Exf(Xτ )− f(x) = Ex
∫ τ

0
Af(Xs)ds.

(c) Let X be a Brownian motion and define Ta = inf{t : Xt = a} to be the first hitting time of
the point a > 0. Working over C0(R) and applying formula (2) to f(x) = exp(θx)Ix≤a for a
suitably chosen θ show that

E0e−λTa = e−a
√
2λ, ∀λ ≥ 0.

D. Show that almost sure convergence implies convergence in distribution.

E. Prove the Portmanteau Theorem:

Theorem 0.1 (Portmanteau Theorem). Let (Xn)n≥1 be a sequence of random variables taking
values in S. The following are equivalent.
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(i) Xn → X in distribution.

(ii) For any closed set K ⊆ S, lim supn→∞ P[Xn ∈ K] ≤ P[X ∈ K].

(iii) For any open set O ⊆ S, lim infn→∞ P[Xn ∈ O] ≥ P[X ∈ O].

(iv) For all Borel sets A ⊆ S such that P[X ∈ ∂A] = 0, limn→∞ P[Xn ∈ A] = P[X ∈ A].

(v) For any bounded function f , denote by Df the set of discontinuities of f . Then for any f
such that P[X ∈ Df ] = 0, E[f(Xn)]→ E[f(X)] as n→∞.
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