
C8.2: Stochastic analysis and PDEs

Problem sheet 3

Ben Hambly

The questions on this sheet are divided into two sections. Those in the first section are compulsory and
should be handed in for marking. Those in the second are extra practice questions and should not be
handed in.

Section 1 (Compulsory)

1. Let Y be a Poisson process with parameter λ and define

Xn(t) =
1

n

(
Y (n2t)− λn2t

)
.

Find An, the infinitesimal generator for Xn, and identify the limit of the sequence (An)n as
n→∞ and the corresponding stochastic process.

2. In proving that sequences of Markov chains converge to diffusions, we have to verify three condi-
tions on the jumps of the chain. Let us write ∆Xh for the increment of the hth chain over a single
jump (in the discrete case in which the time between jumps is h) or over an infinitesimal time
interval of length h (in the continuous case). Our conditions amount to checking that E[∆Xh]/h
and E[(∆Xh)2]/h both converge as h → 0 and that P[|∆Xh| > ε]/h → 0 as h → 0. Prove that
this last condition is implied by the (often more convenient) condition E[(∆Xh)4]/h→ 0.

3. Let Af(x) = 1
2x(1−x)f ′′(x)+(a−bx)f ′(x), for f twice continuously differentiable on [0, 1], where

a and b are positive constants. This is the generator of the Wright-Fisher diffusion with mutation.
Use duality to show uniqueness of the solution to the corresponding martingale problem and to
show that, if X is a solution, X(t) converges in distribution as t→∞ with a limiting distribution
which does not depend on X(0). [Hint: Try a duality function of the form F (x, n) = xn where n
is a non-negative integer and the extended duality result in the notes.]

4. Let E1 = E2 = [0,∞). We take A1 to be the generator of Brownian motion on [0,∞) with
absorbing boundary condition, that is A1f = 1

2f
′′ with

D(A1) = {f ∈ C̄2 : f ′′(0) = 0}.

(Here C̄2 indicates bounded and twice continuously differentiable.) We take A2 to be the generator
of reflecting Brownian motion on [0,∞), so

D(A1) = {f ∈ C̄2 : f ′(0) = 0}.

(a) Let g ∈ C̄2(−∞,∞) satsify g(z) = −g(−z). Show that the martingale problems for A1 and
A2 are dual with respect to F (x, y) = g(x+ y) + g(x− y).
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(b) Use the result above to show that

P[X(t) > y|X(0) = x] = P[Y (t) < x|Y (0) = y],

where X is absorbing Brownian motion and Y is reflecting Brownian motion.

5. Consider the Wright-Fisher diffusion with mutation, whose generator can be written as

Af(x) =
1

2
x(1− x)f ′′(x) +

(
ν2 − (ν1 + ν2)x

)
f ′(x)

on suitable test functions. Find conditions on ν2 for the boundary at 0 to be regular.

6. The Bessel process with parameter α ≥ 0 is the one-dimensional diffusion on [0,∞) with generator

Af(x) =
1

2
f ′′(x) +

α− 1

2x
f ′(x).

(When α is an integer, it is the radial part of a Brownian motion in Rα.) Find expressions for the
speed and scale and hence determine the nature of the boundary at 0 for each parameter value
α.

7. Suppose that we are modelling a population in which each individual carries a particular gene
in one of two forms, which we label a and A. We assume that each individual has exactly one
parent, and offspring inherit the genetic type of their parent. We consider two models:

(a) In the neutral Wright-Fisher model a population of N genes evolves in discrete generations.
Generation (t + 1) is formed from generation t by choosing N genes uniformly at random
with replacement. i.e. each gene in generation (t + 1) chooses its parent independently at

random from those present in generation t. Let us write X
(N)
t for the proportion of type a

genes in the population at time t under this model.

(b) In the neutral Moran model, generations overlap. At exponential rate
(
N
2

)
a pair of genes is

sampled uniformly at random from the population. One of the pair is selected at random

to die and the other splits in two. Let us write Y
(N)
t for the proportion of type a genes in

the population at time t under this model.

Show that the processes X
(N)
Nt and Y

(N)
t both converge as N → ∞ and identify the limiting

diffusion.

Section 2 (Extra practice questions, not for hand-in)

A. Suppose that X is a Feller branching process, that is X ≥ 0 solves the SDE

dXt = aXtdt+
√
γXtdBt,

for suitable constants a ∈ (−∞,∞) and γ > 0. By considering the duality function F (X,Y ) =
exp(−XY ), show that X has a deterministic dual and use it to find P[Xt 6= 0].

B. Consider the Wright-Fisher diffusion with selection, which has generator

Af =
1

2
x(1− x)f ′′(x) + sx(1− x)f ′(x),

for suitable C2 functions f on [0, 1] where s is a constant (called the selection coefficient). Use
duality to check that the martingale problem has a unique solution.
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C. The Ornstein-Uhlenbeck process on R is the one-dimensional diffusion with generator

Af(x) =
1

2
f ′′(x)− xf ′(x).

Prove that both ∞ and −∞ are natural boundaries.

D. Our diffusion approximation to the neutral Wright-Fisher model with no mutation suggests that
for a large population, the time, τ(p), to absorption in one of the states {0, 1} if the initial
frequency of a-alleles is p, should be approimately t(p) given by

t(p) = −2N (p log p+ (1− p) log(1− p)) . (1)

By conditioning on the behaviour of allele-frequencies over a single generation, and using a Taylor
exansion, find an ordinary differential equation that approximates the behaviour of τ(p) (as a
function of p) and verify that it leads to the same approximation.

E. A Galton Watson branching process is a discrete time Markov chain, {Zn}n≥1, which is often
used to model the growth of a population. The evolution is simple. Each individual leaves behind
a random number of offspring in the following generation, according to some distribution, inde-
pendently of all other individuals. Suppose that the mean number of offspring of each individual
is a and the variance is σ2 and write Z0 for the initial population size.

(a) What is the expected population size after N generations?

(b) If we are modelling a very large population, whose size at time zero is NX0 for some large
N and a ≈ 1 + µ

N , then find a diffusion approximation for the population size at time Nt in
units of size N .
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