
C8.2: Stochastic analysis and PDEs

Problem sheet 4

The questions on this sheet are divided into two sections. Those in the first section are compulsory and
should be handed in for marking. Those in the second are extra practice questions and should not be
handed in.

Section 1 (Compulsory)

1. Let r satisfy the stochastic differential equation

drt = −βrtdt+ σ
√
rtdWt,

where {Wt}t≥0 is standard P-Brownian motion and r0 > 0.

Suppose that {u(t)}t≥0 satisfies the ordinary differential equation

du

dt
(t) = −βu(t)− σ2

2
u(t)2, u(0) = θ,

for some constant θ > 0. Fix T > 0. For 0 ≤ t ≤ T find the stochastic differential equation
satisfied by

exp (−u(T − t)rt) .

Hence find the moment generating function for rT . Calculate the mean and variance of rT and
P[rT = 0].

2. Use the Feynman-Kac stochastic representation formula to solve

∂F

∂t
(t, x) +

1

2
σ2
∂2F

∂x2
(t, x) = 0,

subject to the terminal value condition

F (T, x) = x4.

3. We can use the Feynman-Kac representation to find the partial differential equation solved by
the transition densities of solutions to stochastic differential equations.

Suppose that
dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. (1)

For any set B let

pB(t, x;T, y) , P [XT ∈ B|Xt = x] = E [1B(XT )|Xt = x] .
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Use the Feynman-Kac representation (assuming integrability conditions are satisfied) to write
down an equation for

∂pB
∂t

(t, x;T, y)

Deduce that the transition density of the solution {Xs}s≥0 to the stochastic differential equa-
tion (1) solves

∂p

∂t
(t, x;T, y) +Ap(t, x;T, y) = 0 (2)

p(t, x;T, y) → δy(x) as t→ T.

Equation (2) is known as the Kolmogorov backward equation (it operates on the ‘backward in
time’ variables (t, x)).

There is also a Kolmogorov forward equation acting on the forward variables (T, y). In the above
notation,

∂p

∂T
(t, x;T, y) = A∗p(t, x;T, y)

where

A∗f(T, y) = − ∂

∂y
(µ(T, y)f(T, y)) +

1

2

∂2

∂y2
(
σ2(t, Y )f(T, y)

)
.

4. Suppose that {Xt}t≥0 solves

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

where {Wt}t≥0 is a P-Brownian motion. For k : R+ ×R→ R and Φ : R→ R given deterministic
functions, find the partial differential equation satisfied by the function

F (t, x) , E
[

exp

(
−
∫ T

t
k(s,Xs)ds

)
Φ(XT )

∣∣∣∣Xt = x

]
,

for 0 ≤ t ≤ T .

5. Suppose that for 0 ≤ s ≤ T ,

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs, Xt = x,

where {Ws}t≤s≤T is a P-Brownian motion, and let k,Φ : R→ R be given deterministic functions.
Find the partial differential equation satisfied by

F (t, x) = E [Φ(XT )|Xt = x] +

∫ T

t
E [k(Xs)|Xt = x] ds.

6. Let B be a Brownian motion in R and consider At =
∫ t
0 I{Bu>0}du, the amount of time that

Brownian motion spends in the positive half line up to time t. Let F (t, x) = E(exp(−θAt)|B0 =
x), the Laplace transform of At given that the Brownian motion starts from x. By setting the
dissipation term to be r(t, Bt) = −θI{Bt>0} and the initial condition to be 1 and using a time
reversed version of the Feynman-Kac formula, show the PDE satisfied by F , is

∂F

∂t
=

{
1
2
∂2F
∂x2
− θF x > 0, t > 0

1
2
∂2F
∂x2

x ≤ 0, t > 0.
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specifying the initial conditions and, carefully, the continuity conditions at 0. By taking Laplace
transforms, F̂ (λ, x) =

∫∞
0 exp(−λt)F (t, x)dt and solving the resulting ODE, show that

F̂ (λ, 0) =
1√

λ
√
λ+ θ

. (3)

From this we can derive Levy’s arcsine law,

P (At ≤ s|X0 = 0) =

∫ s

0

1

π
√
u(t− u)

du =
2

π
arcsin(

√
s

t
), 0 ≤ s ≤ t.

To see this compute the Laplace transform of the arcsine law by suitably integrating to show that
the transform is as given in (3).

Section 2 (Extra practice questions, not for hand-in)

A. Suppose we start a three dimensional Brownian motion at the origin. Fix a radius 0 < r < 1. In
which of the annuli

A[a] = {x ∈ R3 : a− r ≤ |x| ≤ a} for a ∈ [r, 1]

is the expected occupation time maximal?

B. Suppose that v(t, x) solves

∂v

∂t
(t, x) +

1

2
σ2x2

∂2v

∂x2
(t, x)− rv(t, x) = 0, 0 ≤ t ≤ T.

Show that for any constant θ,

vθ(t, x) ,
x

θ
v

(
t,
θ2

x

)
is another solution.

C. (The Ornstein-Uhlenbeck process). Let {Wt}t≥0 denote standard Brownian motion under P. The
Ornstein-Uhlenbeck process, {Xt}t≥0, is the unique solution to Langevin’s equation,

dXt = −αXtdt+ dWt, X0 = x.

This equation was originally introduced as a simple idealised model for the velocity of a particle
suspended in a liquid. Verify that

Xt = e−αtx+ e−αt
∫ t

0
eαsdWs,

and use this expression to calculate the mean and variance of Xt.

D. The process usually known as Geometric Brownian motion solves the s.d.e.

dSt = µStdt+ σStdWt.

Find the forward and backward Kolmogorov equations for geometric Brownian motion and show
that the transition density for the process is the lognormal density given by

p(t, x;T, y) =
1

σy
√

2π(T − t)
exp

(
−
(
log(y/x)−

(
µ− 1

2σ
2
)

(T − t)
)2

2σ2(T − t)

)
.
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