
Problem sheet 4, General Relativity 2, HT 2019

1. Reproduce the figure in Section 3.4 for the Kruskal-Szekeres spacetime. Show a
radial space–like geodesic with E = 0, and a radial time–like geodesic with E < 1.
What does this condition tell you about ṙ, and therefore r? Where on this figure
are there radial time–like geodesics with E = 0?

2. The Kerr metric in Boyer-Lindquist coordinates is
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Consider an observer moving in this gravitational field. The observer’s worldline
has a tangent vector which is a timelike Killing vector U . Explain why such an
observer does not see any changes in the metric.
Show that such an observer cannot exist in the region between the inner and outer
event horizons (that is r− < r < r+), and that such an observer exists outside the
horizon r > r+ for values of its angular velocity ω in the region ω− ≤ ω ≤ ω+
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where Ω is a quantity that you should find. Prove that inside the ergosphere, that
is r+ < r < r̃+, the observer co-rotates with the black hole. (See lecture notes
for the definition of the various quantities in this problem. See for example Sean
Carroll’s book if you get stuck.)

3. Let K be a timelike Killing vector such that at infinity g(K,K) → −1, and let S
be the Killing horizon for K. Prove that the surface gravity of S, which is defined
by
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(Hint: you can use the fact that K is hypersurface orthogonal on the horizon, or
see R Wald’s book for help.)

4. Let K be a timelike Killing vector such that at infinity g(K,K) → −1, and let S
be the Killing horizon for K. Explain why a stationary observer has four velocity
U which satisfies

Ka = α(x)Ua ,



for some function α(x). Show that the acceleration of the observer is

Aa = gab ∇b(logα) ,

and that the acceleration of the observer measured by an stationary observer at
infinity A∞ is

A∞ = αA .

where A is the magnitude of the acceleration (see S. Carroll for help if necessary).
Show also that the surface gravity of S is given by

κ = lim
r→rH

(αA) ,

where r = rH , and rH is a constant, is the equation that defines the horizon S
(Hint: use problem 3).

5. The deSitter space-time is a solution of Einstein’s field equations with positive
cosmological constant. We can think of deSitter space time as the four dimensional
hyperboloid

−T 2 + x2 + y2 + z2 + w2 = a2 ,

embedded in 4+1 dimensional Minkowski space. Consider the coordinate system
(T, χ, θ, φ) with

x = a cosh(t/a) sinχ sin θ cosφ

y = a cosh(t/a) sinχ sin θ sinφ

z = a cosh(t/a) sinχ cos θ

w = a cosh(t/a) cosχ

T = a sinh(t/a) .

Show that the deSitter metric can be written as

ds2 = −dt2 + a2 cosh2(t/a) dΩ2
3 ,

where dΩ2
3 , is the round metric on the three-sphere

dΩ2
3 = dχ2 + sin2 χ(dθ2 + sin2 θ dφ2) ,

so the spatial sections are three-spheres with radius a cosh(t/a).
Write the metric in the form
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where λ is defined by

dλ2 =
1

a2 cosh2(t/a)
dt2 .

Draw the Penrose diagram for this space-time. Mark the surfaces corresponding to
the past and future null infinity. Explain why a given observer cannot observe the
entire space–time.


