Lecture # (o	
Chapter 3: The 3chaaraschild black hole	
3.1) The 5chaaraschild matrix (1916)	
Recall (Gfl.1)	
$ds^2 = -(-\frac{ar}{r})dt^2 + (-\frac{2M}{r})^{-1}dv^2 + r^2 dL^2$	
where	$dL^2 = d\theta^2 + \sin^2\theta d\phi^2$
for dinatra : r32M	
sor dinatra : r32M	
$s \leq \theta \leq n$, $0 \leq \phi \leq 2\pi$	
This is the unique solution of EFEqs for the exturior, maximumally field of a stotic spinvically symmetric body	
the equation $\frac{d}{dt} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \frac{d\theta}{dt}$	
It is a a very important result, $\frac{d}{dt} = 0$	
It is a a very important result, $\frac{d}{dt} = 0$	
It is a a very important result, $\frac{d}{dt} = 0$	
It is equal to $\frac{d}{dt} = 0$ and $\frac{d}{dt}$.	
In the other hand, $\frac{d}{dt} = 0$ and $\frac{d}{dt}$.	
It is a a very important result.	
It is a a very important result.	
It is a a very important result.	
It is a a very important result.	
It is a a very important result.	
It is a a very useful result.	
It is a a very useful result.	
It is a a very useful result.	
It is a	

* static: there is a HSO, TL-Killing vector That is

- · there is a lailing vector $k = \partial_b$ which is TL ($\gamma(k, k) < 0$) us gas is independent of t (EU ~ fime translation symmetry) ws stationary rolution
- . K is HSO: there are hyporsurfaces I (t = comptant sunface) which are orthogonal to the integral arrows of K us metric has no goi turnes
- : spacetime is a fermily of 3-surfaces (space) and K is proposicular to these

poordinates Σ (t=can stant) (f_1, r_1, θ, ϕ) k $(k_0 + k_1)$ K to integral curves

* spherically symmetric

grab is invariant under 3-space rotations Equivalently: there are 3 killingvectors k_i
with algebra Γ Ki. K: 7 = 6:21 K. $LK_{i,k}$ K_{i} $j = \epsilon_{ijk}$ K_{h} ie the isometry group contains ⁵⁰¹³ and the orbits are 2-ipheres Hypermufaces Σ (t = systant) with coords (r, θ, ϕ) have surfaces $r =$ constant which $avc = 2 - p$ pheres.

 1913 : Birk $10/15$ theorem In Carroll) The Schwarzschild metric is the <u>unique</u> spherically symmetric blution to vacuum EFE95. Spherically symmetric sons of vacuum egs <u>must</u> be static and asymtotically flat.

What is M? ①
\nAnabile SM flow away from the body
\nRewrite SM in irothpic coordinates:
\n
$$
ds^2 = -A(\rho)^2 dt^2 + B(\rho)^2 (\frac{d\rho^2 + \rho^2 d\Omega^2)}{dx^2 + dy^2 d\theta^2}
$$

\nwith $Q = Q(r)$ $Q^2 = r^2 + q^2 + r^2$
\n $Q = Q(r)$ $Q^2 = r^2 + q^2 + r^2$
\n $Q = Q(r)$ $Q^2 = r^2 + q^2 + r^2$
\n $Q = Q(r)$ $Q^2 = r^2 + r^2 + r^2$
\n $Q = Q(r)$ $Q^2 = r^2 + r^2 + r^2$
\n $Q = Q(r)$ $Q^2 = r^2 + r^2$
\n $Q = Q(r)$ $Q = r^2 + r^2$
\n $Q = Q(r)$ $Q = r^2 + r^2$
\n $Q = r^2 + r^2$
\

÷,

$$
\int \text{E}(x \, dx) \, dx
$$
\n
$$
B(\rho)^{-2} = \left(\frac{r}{\rho}\right)^{n} \text{ and } B(\rho)^{-2} \left(\frac{d\rho}{d\tau}\right)^{n} = \left(\frac{1-\gamma}{\tau}\right)^{-1}
$$
\n
$$
\Rightarrow \left(\frac{r}{\rho}\right) \left(\frac{d\rho}{d\tau}\right)^{n} = \frac{1}{\tau} \left(1 - \frac{2r}{\tau}\right)^{-1} dx
$$
\n
$$
\Rightarrow \text{log}_{\rho} \rho = \pm \int \frac{1}{r} \left(1 - \frac{2r}{\tau}\right)^{-1} dx \, dx
$$
\n
$$
= \pm \log_{\rho} \left(-2t + 2t + 3t + 3t\sqrt{-\frac{2r}{\tau}}\right) + \text{snat.}
$$
\n
$$
\rho = 2C \left(r - H + r\sqrt{-\frac{2r}{\tau}}\right)^{-1}
$$
\n
$$
\text{Table 4: } \text{log}_{\rho} \left(-2t + \frac{2r}{\tau}\right)^{-1}
$$
\n
$$
\text{log}_{\rho} \left(-2t - H + \frac{r}{\tau}\right) = \frac{1}{\tau} \left(1 - \frac{2r}{\tau}\right)^{-1}
$$
\n
$$
\text{log}_{\rho} \left(-2t - H + \frac{r}{\tau}\right) = \frac{1}{\tau} \left(1 - \frac{2r}{\tau}\right)^{-1}
$$

$$
r(r-2M) = \left(\frac{\rho}{2E} - r + M\right)^{2}
$$
\n
$$
r(r-2M) = \left(\frac{\rho}{2E} + M\right)^{2} - 2r\left(\frac{\rho}{2E} + M\right) + K
$$
\n
$$
\left(\frac{\rho}{2E} + M\right)^{2} = \frac{1}{C} \sqrt{6}
$$
\n
$$
\left(\frac{\rho}{2E} + M\right)^{2} = \frac{1}{C} \sqrt{6}
$$
\n
$$
r = \frac{c}{\rho} \left(\frac{1}{1C} + M\right)^{2} = \frac{\rho}{4C} \left(1 + \frac{2MC}{\rho}\right)^{2}
$$
\n
$$
B = \frac{r}{\rho} = \frac{1}{4C} \left(1 + \frac{2MC}{\rho}\right)^{2} \qquad C = \frac{1}{4}
$$
\n
$$
r = \rho \left(1 + \frac{M}{1\rho}\right)^{2}, \qquad B = \left(1 + \frac{M}{1\rho}\right)^{2} \qquad C = \frac{1}{4}
$$
\n
$$
\rho = \frac{1 - 2M}{\rho} \cdot \left(1 + \frac{r}{1\rho}\right)^{2} = \left(1 + \frac{M}{1\rho}\right)^{2} \left(1 + \frac{M}{1\rho}\right)^{2} - \frac{2M}{\rho}
$$
\n
$$
= \left(1 + \frac{M}{1\rho}\right)^{-2} \left(1 - \frac{r}{1\rho}\right)^{2}
$$
\n
$$
\rho = \frac{1 - M}{1 + M} \qquad \text{and} \qquad
$$

Then

\n
$$
ds^{2} = -\left(\frac{1-\eta h\rho}{1+\eta h\rho}\right)^{2} d\xi^{2}
$$
\n
$$
+ \left(1+\frac{\eta}{\tau}\right)^{4} (dx^{2} + dy^{2} + dy^{2})
$$
\n
$$
ds^{2} = -\left(1-\frac{\eta}{\rho} + \frac{\eta}{\rho}\right)\left(1-\frac{\eta}{\rho} + \frac{\eta}{\rho}\right) d\xi^{2}
$$
\n
$$
+ \left(1+\frac{\eta}{\tau}\frac{\eta}{\rho} + \frac{\eta}{\rho}\right) d\xi^{2} dx
$$
\n
$$
= -\left(1-\frac{2\eta}{\rho} + \frac{\eta}{\rho}\right) d\xi^{2} + \left(1+\frac{2\eta}{\rho} + \frac{\eta}{\rho}\right) d\xi dx
$$
\nConveaving with motion in such a 22.

\n
$$
M = \text{foldal mass}
$$
\n
$$
J = 0
$$

Question Want to extend the meth to ⁰ or E 2M ² what happens at ^r ^o ^a re 2M ^a ^r 2M coordinate singularity ^r ^o physical ringularity ie metric is singular in any coordinator systems This can be seen by looking at curvature invariants Rabid 12 48 M 62 rt cannot use gab Rab as the vanishes ie ^r ^o is ^a genuine curvature singularity as this invariant diverges Note that this quantity is finite at rU4_ tidal farces hiniti at rtm

 $\sqrt{9}$ Need better understanding \rightarrow comes fruct a maximal extension of the surwarzoschild blution \rightarrow event horiton at r=2M

Penrose diagrams

13.2	lational	wall	spoleoics	(c21)
Let	$L = \frac{1}{d}g_{ab}\dot{x}^a\dot{x}^b$	Laqromqism for afhields	gwomodrind grodvis	
Thum	$L = \frac{1}{d}(-F\dot{t}^2 + F^{-1}\dot{r}^2 + r^a(\dot{\theta}^2 + \dot{m}^2\dot{\theta}\dot{\phi}^2))$			
When	$F = 1 - \frac{2M}{f}$			
L is a sumstant along chox at 2L = 1, 0, -1 SL N T L				
Guld that	Caqvanqian to study głodewic et 3L M T L			
Gudd	Caqvanqian to dtdt (aqvang, eq dtdt (aqvang, eq dtdt (aqvang, eq dtdt (aqvang, eq dtdt (aqvang, eq equarkd equ			
Instead: it is better to exploit a\n \ninfinite\n \n				

The call: If
$$
K
$$
 is a Gilling with the
\nthen $Q = K_{\alpha} \dot{x}^{\alpha}$ is constant along
\nThus, qV be first order differentiable
\n $(\alpha \dot{V}vrt$ intervals')
\nWe have $q(G)lim = vector_{\alpha}rV$
\n $W = have \dot{q}(G)lim = vector_{\alpha}rV$
\n $W = 3$
\n $W = 4$
\n $W = 1$
\n $W = 1$

Thm the equations for radial null conditions are
\n
$$
E = F\dot{\theta}
$$
\n
$$
d\theta = 0 = -F\dot{\theta}^2 + F^{-1}\dot{r}^2
$$
\n(a) into the eliminate $\dot{\theta}$
\n
$$
0 = -F\left(\frac{E}{F}\right)^2 + F^{-1}\dot{r}^2 \Rightarrow \dot{r}^2 = E^2
$$
\n
$$
\Rightarrow r = r_0 \pm E_5 \quad r_0 \ge 0H
$$
\n
$$
+ outgoing geodesics
$$
\n
$$
- in amin of geodesics
$$
\n
$$
R = \frac{1}{4}\dot{r} \cdot R = EF^{-1}
$$
\n
$$
\dot{r} \cdot t = \frac{1}{4}\dot{r} \cdot R = EF^{-1}
$$
\n
$$
\dot{r} \cdot t = \frac{1}{4}\dot{r} \cdot R = EF^{-1}
$$
\n
$$
\frac{1}{4}\dot{r} = \pm F^{-1}
$$
\n
$$
\frac{1}{4}\dot{r} \cdot R = \pm F^{-1}
$$
\n
$$
\frac{1}{4}\dot{r} \cdot R = \pm F^{-1}
$$
\n
$$
\frac{1}{4}\dot{r} \cdot R = \pm F^{-1}
$$

Incoming geschsi lecture 11

 $T = r_0 - E_S$ $r_0 > 2M$ $(r = c$ for $s = -c$)
 $r = 0$ $t+r_{*}$ = com stant = V_{0}

$$
\frac{\partial ut\space \text{points}}{\partial r} = r_0 + Es \qquad r_0 > 214 \qquad (r = \infty \text{ for } s = \infty)
$$
\n
$$
t_0 = r_* = \text{const} = u_0 \qquad \text{further}
$$

ta In this case gesdents ¹ leave ^r 21 ⁹ at ⁱ l finite ^s in the past ^f Is st Es to 2M ^k but as ^r 2M r ^o l I a where was the geodesic 111 ^r before 11 l geodesics run off the ¹¹ coordinate patch at t ^a day at ^a finite affine parameters into the past

Ed Extnsn so Theeddington Finkelsteisordinates ProLbm geodesics cannot be extended to arbitrarily large values of the affine parameter so we have ^a gesdesicallyincsmpletespaa.fi New coordinate system Glidington Finkelstein let U be the manihld br ^r 2M with SM and note that there is ^a disannected manifold for ^a cram with the same metrics Question can we extend h with the same metric that is Is there ^a larger manifold spacetime MI and metric gon M which is in aides with SM on Us Recall ht rt 2M hg1 ¹ ht ft r constant alongincomingnull geodesics ^u t ^r constant along outgoing nullgeodetics Then du Itt Ft dr du Dt Ft dr

Imcoming null gradients	10, r, 0, 0)	10
Eliminating t in favor of V	20	
Eliminating t in favor of V	30	
$ds^2 = -F dV^2 + 2dVdr + r^1 d\Omega^2$	30	
32	-F dV^2 + 2dVdr + r^1 d\Omega^2	30
33	-F dV^2 + 2dVdr + r^1 d\Omega^2	30
34	6 a (away yn momhold)	30
35	6 a (away yn momhold)	30
36	6 a (away yn momhold)	31
37	6 a (daywr momhold)	32
38	33	
39	30	
30	31	
31	32	
32	33	
33	35	
34	37	
35	39	
35	31	
36	35	
37	39	
38	31	
39	35	
30	36	
31	37	
32	38	

 $\mathcal{L}^{\text{max}}_{\text{max}}$

So the have a problem:

\nor the formula do, we have a minimum doubleth's point, and the formula is given by:

\n
$$
u = +\infty \quad \text{is a minimum of the point, and } P = N
$$
\n
$$
v = -\infty \quad \text{is a minimum of the point, and } P = N
$$
\n
$$
v = -\infty \quad \text{is a minimum of the point, and } P = N
$$
\n
$$
v = -\infty \quad \text{is a minimum of the point, and } P = N
$$
\n
$$
v = -\infty \quad \text{is a minimum of the point, and } P = N
$$
\n
$$
v = -\infty \quad \text{is a minimum of the point, and } P = N
$$

Include both extensions In 2 Us in one nnaltanesusly

 $\begin{pmatrix} \overline{y} \end{pmatrix}$ 3.4) The Kruskal-Szelares spacetime Kruskal + Szelcwes coordinates (1960) Write metric in twoms of $(v_i u_i \theta_i \phi)$ (eliminate the in favor of v₁u) Then $ds^{2} = -F dudv + r^{2}d\Omega^{2}$

Where

$$
u = t-r_{*}
$$
 $v = t+r_{*}$
and $r_{*} = r + aMlog|\frac{r}{m}|^{-1}$

 $t = \frac{1}{a} (44 v)$ **DJ** $\gamma = \frac{1}{d}(u-v)$ E gives rintums of (u,v)

constant along mill out-gesdesics u consistant along mill in-groderics $\sqrt{2}$

let
\n
$$
\frac{1}{\pi}
$$
\n
$$
\frac{1
$$

$$
\bigodot
$$

$$
\frac{dS^{2}}{dS^{2}} = -32 M^{3} \frac{e^{-r/2H}}{r} dU dV + r^{2} dQ^{2} (KSM)
$$

$$
Veynlow \text{at } r=2M \quad (u or V vanishu)uniform at $r=0$ (u $T=1$)
$$

Extend Schwarzschild spacetime

to a manifold M
analytic
continating
$$
-8 < 15 < 8
$$
 , $-8 < 11 < 15$
within this $10 < 15 + 1$

$$
(9, \sqrt{1}, \theta, \phi)
$$
 are called Fruskal-Fsekvys
cordinates
Imavimal unique effunion.

^I rimply connected TL gooderically complete

 h (and a) is sonst abong N out-geodesics $T(mdv)$ is romst along N in-grodenis

Let
\n
$$
T = \frac{1}{2} (Q_{4} + \gamma) \times 2 + \frac{1}{2} (Q - \gamma)
$$
\n
$$
\frac{Y \cdot 2M}{T} = \frac{1}{8} (-e^{-t/4M} + e^{\gamma/4M})
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{-t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{-t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{-t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{-t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{-t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{-t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{-t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{-t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{-t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{-t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{-t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{-t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4} (-e^{-t/4M} + e^{-t/4M}) e^{r_{4}(M)}
$$
\n
$$
= \frac{1}{4}
$$

$$
H_{\text{SUEUAV}} \quad \underbrace{M \quad \text{OMW}}_{\text{MUEUAV}} \quad 0 < r < \infty
$$

 $lecture$ $#12$ Kruskal-Szekeres spautime: causal structuve of (max) extended schwarzschild metric l cach point on the plane 3 2-sphere]

 $U =$ constant along $N -$ out glodenics $V =$ constant abny $N-$ in ges den's $*P$ lot u, v axes at $us \circ :$ these correspond to rel </u> x Surfaces $r = \omega n$ stant hypwholas UV = constant (asgmptotic to u =o kU=o) In particular: r=0 is 2T=1 carroature

240 surfaces teamstant lines UV constant through origin null gas denies the constant lines inurning ^L ^g can hmf outgoing Regions there are four regions of KS ipautime dependmding on bo the signs of h f

Regions (I) & (I) : 250 $\sigma(T)$ aco ars $r > 2$ is Schwarzschild spackline $*\; A$ radially in falling observer or light signal will cross line al finite
U = 0 (r = 2M) proportine and enter κ gion $\textcircled{\tiny I}$. Once there, within a finite proper time, it will fall into the lingularity at $r=0$. any hght signals smt Wom (II) will $cmain$ in $\underline{\textcircled{\textcirc}}$ and will fall into the singularity (connider light cones!) We call the surface r=2M am Tevent hoviton] and region (II) a b lack hold (BH) . $IlumavC: (I) (I) = \mathcal{U}_i$ incoming Eddington-Finkelftein ipau time

 26 Megion I & II $\mathbb{F}(\mathbb{T})\cup\mathbb{F}(\mathbb{T})$ = \mathbb{U}_{3} aut soing Eddington-Finkelptein 1 pau time Any signal in Im must have originated in the singularity r=0 and within
a limite time must leave (II) Givite time must leave (II) We call region (III) a white hole P las motors col mypote n cal

 $sim\text{CD}$ this is <u>now</u> $\frac{1}{2}$ $h > 0$ $0 < 0$ $1 < 0$ This region is <u>irometric</u> to schwarzschild $(\text{In fact}, \quad (u, v) \rightarrow (-u, -v)$ is an insmert of the Kruskal-Stelcers metric) and it is another asymptotically flat region of space time outside the snr face $r = 2r1$ Geodesics crossing from (I) to (I) must be <u>Marelila</u>. Any light signals smt from (I) will end up at $r = 0$ is an derror in I cannot ammunicate with one in (IV)

Convidar the hypwimslac,
$$
\Sigma_t
$$
 (28)

\nwith $t = \text{constant}$.

\nThus, and $u_1v_1 = \text{constant}$.

\nRecall s always think $u_1v_1 = \text{constant}$.

\nRecall s always think $u_1v_1 = \text{constant}$.

\nCorrindis $\frac{(t_1 \rho, \theta_1 \phi)}{(t_1 \rho, \theta_1 \phi)}$

\nwhere $ds^2 = -\frac{1 - t_1 \rho_0}{1 + t_1 \rho_0} dt^2 + (1 + \frac{t_1}{2\rho})^3 (d\rho^2 + \rho^2 d\Omega^2)$

\nwhere $r = \rho(1 + \frac{t_1}{2\rho})^2$ ($\rho^2 = x^2 + \rho^2 + a^2$)

\nThe total is $d \Sigma_t = (1 + \frac{t_1}{2\rho})^4$ ($d\rho^2 + \rho^2 d\Omega$)

\nwhere $d \Sigma_t = (1 + \frac{t_1}{2\rho})^4$ ($d\rho^2 + \rho^2 d\Omega$)

\nwhere $d \Sigma_t = (1 + \frac{t_1}{2\rho})^4$ ($d\rho^2 + \rho^2 d\Omega$)

\nwhere Ω is $\frac{1}{2} \Sigma_t = \frac{1}{2} \times \frac{$

 \prec

In these coordinates the map ^p f MI 4 p is an ibm et which corresponds to Ch V l U V of the KS spacetime and which leaves Ned p 1 This is ^a surface of radius ^r ² Comidw mw the geometry of It real ^r 2M p Mlc on both sides that is connider the geometry of spacetime as we approach the origin ^N ^V ^o

We have:
\n
$$
ds_{\Sigma_{t}} = \left(1 + \frac{H}{2\theta}\right)^{4} (d\phi^{2} + \phi^{2} d\theta^{2})
$$
\n
$$
1 + \frac{2H}{\theta} + \cdots
$$
\n
$$
1 + \frac{2H}{\theta} + \theta^{2} + \theta^{2} + \theta^{2} + \theta^{2} + \cdots
$$
\n
$$
1 + \frac{2H}{\theta} + \
$$

 $\sqrt{2}$

lecture b 13.52 killing vectors hull hypnturfaces and hunt horizons Killinguechtoneeall SM is static ^k at is ^a HSO TL killing vets In terms of N V K 7th Jut 2tV2o f U2utV2v and glk.lt 2gurKnKV 2fIerhMqV ll 2fI K is t when he to ie ^r ²¹⁴ ie ⁹ f PTL geodesic in PPTL geodesic in II Kis Nell when W ^o ie ^r ² ie h ^o or V ^o K is SI when NV ^o ie ^r ²²¹⁴ ie IO t ¹ The KSM ismtstatite in these regions

 IS there α $TL - 1$ Gillingverts in these regions

Null	Mypexenvfals	(32)
Let $u(x)$ be a symbol. Sumation on practice.		
Conindex a family of Mybaryfates Σ defined by $Q(x) = \text{constant}$		
Vertex	$Q(x) = \text{constant}$	
Vertex	$0 \subset n = 4$ $q^{ab}(\partial_{a}u) \partial_{b}$	
Definition: We say that Σ is $Q(n,n) > 0$		
Formula	$ig(n, n) = 0$	
twuella	$ig(n, n) = 0$	
trivuella	$ig(n, n) \subset 0$	

 \blacktriangledown

For the KS-positive, comidur the hypersurfalo
\n
$$
r = constant
$$
\n
$$
n = \psi_{q}^{ab} (\partial_{ar}) \partial_{b} = \psi F \partial_{r}
$$
\n
$$
= \psi F (\partial_{r} u) \partial_{u} + \partial_{r} u \partial_{v} = \frac{\psi}{4M} (u \partial_{u} + u \partial_{v})
$$
\n
$$
\gamma(n, n) = \frac{1}{4} \int_{0}^{\pi} n^{b} \int_{0}^{\pi} \frac{1}{2} \int_{0}^{\pi} \psi^{2} F^{2} = \psi^{2} F
$$
\n
$$
= - \psi^{2} \frac{1}{4} \int_{0}^{\pi} e^{-t/2H} u \partial_{u} u
$$

\nSo **1** = format may now make one
\n
$$
3
$$
 = 3
\n 3 = 10
\n 4 = 0 or 150
\n 4 = 0 or 150
\n 4 = 0 or 150
\n 1 = 10
\n 1 = 0 or 150
\n 1 = 10
\n 1 = 0 or 150
\n $$

Moreover: The integral curve of n

\n
$$
\frac{1}{2}mv = n^2 \nabla a \nabla b = n^3 \nabla a (\nabla b \nabla b)
$$
\n
$$
\frac{1}{2}mv = n^4 \nabla a (\nabla a \nabla b)
$$
\n
$$
= n^4 \left((\nabla a \nabla b) \partial b \nabla a + \nabla a \partial b \nabla b \partial a \nabla \partial a \
$$

350 One Can, of carry, hnd afhhely
Pommetrized geodesics, ie one can find a function 4 it $n = 4n$ satisfies \tilde{h} \tilde{v} \overline{v} \overline{v} \overline{h} \overline{b} = σ .

Definition: null affinely power chized geodesics are called the governation of the m ll hyphosoir face ϵ

For the LS-phase him:
\nthe event having two
$$
u = 0
$$
 (r=2m)
\nhas normal
\n $n = \frac{1}{4M} + \frac{1}{M} + \frac{1}{M} + \frac{1}{M}$
\nIf is $m + \frac{1}{M} + \frac{1}{M} + \frac{1}{M}$ is $m + \frac{1}{M} + \frac{1}{M}$
\n $\frac{1}{M} = \frac{1}{M}$
\nand the cylinder $\frac{1}{M}$ amount the value of the sum of the sum
\nare the your orders of the event has ten

Definition: A null hypw multiple
$$
\Sigma
$$
 is a
\n*Gilling hwi ton* of a filling vector field K
\nif K is normal to Σ on Σ .

\nOutput

Suppose n is normal to Σ and that the corresponding geodesics are a function parametrized \dot{u} c $n^a \overline{V}_a N_b = 0$ A KV normal to Σ has the form $K = f n$ on Σ br same function f Then K^{a} $\forall a \not\vdash^{b} = \emptyset$ K $K^{a}\overline{U}_{a}k^{b} = K^{a}\overline{U}_{a}(\int V^{b}) = K^{a}((\overline{U}_{a}\int)V^{b} + \int\overline{V}_{a}k^{b})$ $=$ $(\uparrow \sqrt{\alpha} \mathcal{L}^{\dagger}) \mathcal{L}^{\dagger}$ so $k = f^{\prime} \nabla_{k} f$ Definition: k is called the hypersurface gravity For the CS -spacetime: $Q_0 = 0$ $(r = 2M)$ is a killing hoviton of the killings $k = 1/419$

 $3¹$

Remarks: ^k is constant abny integral curves of K, and tence it is constant on the hull hypermufale 3 he is interpreted as the force that an observer at "infinity" needs to apply
to a unit-mas tot particle to s tay at the britan